B E k iT on what do you want your website to do?

Ektron®
eWebEditPro Developer’s
Reference Guide

Release 5.1, Revision 1

Ektron® Inc.

5 Northern Blvd., Suite 6
Ambherst, NH 03031

Tel: +1 603-594-0249
Fax: +1 603-594-0258
Email: sales@ektron.com
http://www.ektron.com

Copyright 2007 Ektron®, Inc. All rights reserved.
EKTRON is a registered trademark of Ektron, Inc.

Release 5.1, Revision 1, June 28, 2007

EKTRON, INC. SOFTWARE LICENSE AGREEMENT

** READ THIS BEFORE LOADING SOFTWARE**

YOUR RIGHT TO USE THE PRODUCT ENCLOSED IN THIS ENVELOPE OR OTHERWISE DELIVERED IS SUBJECT
TO THE TERMS AND CONDITIONS SET OUT IN THIS LICENSE AGREEMENT. OPENING THIS ENVELOPE OR USING
THIS PRODUCT SIGNIFIES YOUR AGREEMENT TO THESE TERMS. IF YOU DO NOT AGREE TO THIS SOFTWARE
LICENSE AGREEMENT, YOU MAY RETURN THE PACKAGE WITH THE UNOPENED ENVELOPE OR AS IT WAS
DELIVERED AND THE UNDAMAGED SOFTWARE ENCLOSED, ALONG WITH THE RECEIPT, TO YOUR SUPPLIER OR TO
EKTRON, INC. WITHIN THIRTY DAYS FROM THE DATE OF PURCHASE FOR A FULL REFUND.

CUSTOMER should carefully read the following terms and conditions before using the software program(s) contained
herein (the Software). Opening this sealed envelope, and/or using the Software or copying the Software onto CUSTOMER'S
computer hard drive indicates CUSTOMER'’S acceptance of these terms and conditions. If CUSTOMER does not agree with the
terms of this agreement, CUSTOMER should promptly return the unused and unopened Software for a full refund.

Ektron, Inc. (Ektron) grants, and the CUSTOMER accepts, a nontransferable and nonexclusive License to use the
Software on the following terms and conditions:

1. Rightto use: The Software is licensed for use only in delivered code form. Each copy of the Software is licensed for use
only on a single URL. Each license is valid for the number of seats listed below (the Basic Package). Any use of the Software
beyond the number of authorized seats contained in the Basic Package without paying additional license fees as provided
herein shall cause this license to terminate. This is not a concurrent use license. Should CUSTOMER wish to add seats beyond
the seats licensed in the Basic Package, the CUSTOMER may add seats on a block basis at the then current price for additional
seats (see product pages for current price). The Basic Packages are as follows:

eWebEditPro - Licensed for ten (10) seats per URL.
For purposes of this section, the term seat shall mean an individual user provided access to the capabilities of the Software.

2. Duration: This License shall continue so long as CUSTOMER uses the Software in compliance with this License.
Should CUSTOMER breach any of its obligations hereunder, CUSTOMER agrees to return all copies of the Software and this
License upon notification and demand by Ektron.

3. Copyright: The Software (including any images, applets, photographs, animations, video, audio, music and text
incorporated into the Software) as well as any accompanying written materials (the Documentation) is owned by Ektron or its
suppliers, is protected by United States copyright laws and international treaties, and contains confidential information and trade
secrets. CUSTOMER agrees to protect the confidentiality of the Software and Documentation. CUSTOMER agrees that it will
not provide a copy of this Software or Documentation nor divulge any proprietary information of Ektron to any person, other than
its employees, without the prior consent of Ektron; CUSTOMER shall use its best efforts to see that any user of the Software
licensed hereunder complies with this license.

4. Limited Warranty: Ektron warrants solely that the medium upon which the Software is delivered will be free from defects
in material and workmanship under normal, proper and intended usage for a period of three (3) months from the date of receipt.
Ektron does not warrant the use of the Software will be uninterrupted or error free, nor that program errors will be corrected. This
limited warranty shall not apply to any error or failure resulting from (i) machine error, (ii) Customer's failure to follow operating
instructions, (iii) negligence or accident, or (iv) modifications to the Software by any person or entity other than Company. In the
event of a breach of warranty, Customer’s sole and exclusive remedy, is repair of all or any portion of the Software. If such
remedy fails of its essential purpose, Customer’s sole remedy and Ektron’s maximum liability shall be or refund of the paid
purchase price for the defective Products only. This limited warranty is only valid if Ektron receives written notice of breach of
warranty within thirty days after the warranty period expires. In the event of a breach of warranty, Ektron’s sole responsibility,
and CUSTOMER'’S sole and exclusive remedy, is correction of any defect or bug causing the breach of warrant (either by
repair or replacement of the Software). In the event this remedy fails of its essential purpose, CUSTOMER's sole and exclusive
remedy shall be refund of the Purchase Price of the defective Software only. This limited warranty is only valid if Ektron receives
written notice of breach of warranty within thirty days following the warranty period.

5. Limitation of Warranties and Liability: THE SOFTWARE AND DOCUMENTATION ARE SOLD AS IS AND WITHOUT
ANY WARRANTIES AS TO THE PERFORMANCE, MERCHANTIBILITY, DESIGN, OR OPERATION OF THE SOFTWARE.
BECAUSE OF THE DIVERSITY OF CONDITIONS UNDER WHICH THIS PRODUCT MAY BE USED, NO WARRANTY OF
FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. EXCEPT AS DESCRIBED IN SECTION 4, ALL WARRANTIES
EXPRESS AND IMPLIED ARE HEREBY DISCLAIMED.

THE REMEDY DESCRIBED IN SECTION 12 SHALL BE CUSTOMER’'S SOLE REMEDY FOR ANY PERFORMANCE
FAILURE OF THE PRODUCTS. NEITHER COMPANY NOR ITS SUPPLIERS SHALL BE LIABLE FOR ANY LOSS OF
PROFITS, LOSS OF BUSINESS OR GOODWILL, LOSS OF DATA OR USE OF DATA, INTERRUPTION OF BUSINESS NOR
FOR ANY OTHER INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND UNDER OR
ARISING OUT OF, OR IN ANY RELATED TO THIS AGREEMENT, HOWEVER, CAUSED, WHETHER FOR BREACH OF
WARRANTY, BREACH OR REPUDIATION OF CONTRACT, TORT, NEGLIGENCE, OR OTHERWISE, EVEN IF COMPANY
OR ITS REPRESENTATIVES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS.

6. Miscellaneous: This License Agreement, the License granted hereunder, and the Software may not be assigned or in
any way transferred without the prior written consent of Ektron. This Agreement and its performance and all claims arising from
the relationship between the parties contemplated herein shall be governed by, construed and enforced in accordance with the
laws of the State of New Hampshire without regard to conflict of laws principles thereof. The parties agree that any action
brought in connection with this Agreement shall be maintained only in a court of competent subject matter jurisdiction located in
the State of New Hampshire or in any court to which appeal therefrom may be taken. The parties hereby consent to the
exclusive personal jurisdiction of such courts in the State of New Hampshire for all such purposes. The United Nations
Convention on Contracts for the International Sale of Goods is specifically excluded from governing this License. If any
provision of this License is to be held unenforceable, such holding will not affect the validity of the other provisions hereof.
Failure of a party to enforce any provision of this Agreement shall not constitute or be construed as a waiver of such provision or
of the right to enforce such provision. If you fail to comply with any term of this License, YOUR LICENSE IS AUTOMATICALLY
TERMINATED. This License represents the entire understanding between the parties with respect to its subject matter.

Esker Active X Plug-in, Version 4.4
Active X controls under Netscape

Use License

IMPORTANT: READ CAREFULLY -

Use of the Esker Active X Plug-in, Version 4.4, is subject to the terms and conditions below. BY INSTALLING, COPYING OR
OTHERWISE USING THE PLUG-IN, YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS BELOW. IF YOU DO
NOT AGREE TO THESE TERMS AND CONDITIONS, DO NOT INSTALL, COPY OR USE THE PLUG-IN.

The Plug-in is provided to you as an end-user “as is” without technical support. No rights are granted to you in this license for
commercial use or redistribution of any kind. Should you desire to redistribute the Plug-in or include it with other software
packages please e-mail Esker at axplug-in@esker.com to find out how you may do so.

DISCLAIMER OF WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, ESKER AND ITS
SUPPLIERS PROVIDE TO YOU THE PLUG-IN AS IS AND WITH ALL FAULTS; AND ESKER AND ITS SUPPLIERS HEREBY
DISCLAIM WITH RESPECT TO THE PLUG-IN ALL WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) WARRANTIES OR CONDITIONS OF OR RELATED TO:
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, LACK OF VIRUSES,
ACCURACY OR COMPLETENESS OF RESPONSES, RESULTS, LACK OF NEGLIGENCE OR LACK OF WORKMANLIKE
EFFORT, QUIET ENJOYMENT, QUIET POSSESSION, AND CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK
ARISING OUT OF USE OR PERFORMANCE OF THE PLUG-IN REMAINS WITH YOU.

EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ESKER OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER INCLUDING, BUT NOT LIMITED TO,

DAMAGES FOR: LOSS OF PROFITS, LOSS OF CONFIDENTIAL OR OTHER INFORMATION, BUSINESS INTERRUPTION,
PERSONAL INJURY, LOSS OF PRIVACY, FAILURE TO MEET ANY DUTY (INCLUDING OF GOOD FAITH OR OF
REASONABLE CARE), NEGLIGENCE, AND ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER ARISING OUT OF
OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE THE PLUG-IN, OR FAILURE TO PROVIDE TECHNICAL
SUPPORT, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS LICENSE, EVEN IF ESKER
OR ANY SUPPLIER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Due to the complex nature of computer software Esker does not warrant that the Plug-in is completely error-free, will operate
without interruption or is compatible with all equipment and software configurations. You are advised to check all work
performed with the Plug-in. Do not use the Plug-in in any case where significant damage or injury to persons, property or
business may happen if an error occurs. You expressly assume all risks for such use.

© 2001 Esker, Inc. All rights reserved. Copyright to and in the Plug-in remains the property of Esker, Inc. and as such, any
copyright notices in the Plug-in are not to be removed.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, THAT YOU UNDERSTAND THIS AGREEMENT,
AND UNDERSTAND THAT BY CONTINUING THE INSTALLATION OF THE SOFTWARE, BY LOADING OR RUNNING THE
SOFTWARE, OR BY PLACING OR COPYING THE SOFTWARE ONTO YOUR COMPUTER HARD DRIVE, YOU AGREE TO
BE BOUND BY THIS AGREEMENT'S TERMS AND CONDITIONS. YOU FURTHER AGREE THAT, EXCEPT FOR WRITTEN
SEPARATE AGREEMENTS BETWEEN EKTRON AND YOU, THIS AGREEMENT IS A COMPLETE AND EXCLUSIVE
STATEMENT OF THE RIGHTS AND LIABILITIES OF THE PARTIES.

(c) 1999-2003 Ektron, Inc. All rights reserved. LA10031, Revision 1.5b

Summary Table of Contents

INEFOTUCTION ... e e e e e 1
eWebEditPro Object Modeloovviiiiiiiiiiee e 2
eWebEditPro API Cheat Sheet.........covvvviiiiiis 25
COMMANTS .. 157
Using eWEDEItPIOcooeeviiiiee e 159
Design and Implementation Guidelinesccooovveeiiiiiiiiiiiiiiiiinenn. 159
eWebEditPro Dataflow.............couvviiiiiiiiiiiie 162
Defining the Toolbar...............iiiiiiii e 166
Dynamically Changing the Editor............cooviiiiiiiiiiin 186
Customizing the Popup BUtton ... 189
Customizing Context MENUSoovviiiiiiiiee e 192
Modifying the Language of eWebEdIitProcccceeiiiiviiiiiiiiiinnnnnn. 201
Customizable JavaScript Files...........cccoooiiiiiiiiii 227
Client Installation Pagescccoeeiiiiiiiiiiiiiieee e 233
JavaSCript ODJECES ... 236
ACHIVEX CONLIOL ... 245
The Configuration Data................cuviiiiiiiie e, 248
Encoding Special Characters..........cooovviiiiiiiiiiiiieeeeeeeee e 354
SUYIE SNEELS ... 367

Managing Hyperlink Dialogsccceeeviiiiiiiiiiiiiic e 382

Managing IMAGESoooiiiiiiiei e 392

Content UpPload...........uuueiiiiie e e 500
WEDBIMAGEFX ... 510
Integrating eWebEdItPro............ceiiiiiiiiiieeeeeecee e 533
APPENTICES ...t a e eas 576
Appendix A: Naming the eWebEditPro Editorccoovvvvieenn... 576
AppendixX B: Error MESSAQEScooevie e 577
Appendix C: eWebEditPro Architecture............ccccceeeiiiiiiiiineceenns 583

Appendix D: Automatic Upload File TYPES......cccceevveieeeeiiiiiiiiiiiiiennn. 585

Detailed Table of Contents

[a Lo To 1¥ Lo 0] o SRS 1
eWebEditPro Object Model ..o, 2
ewebeditproeVents ODJECT ... 3
eWebEditProUtil ODJECTeeeiiiiiiiiiiiiee e 4
EWEDEItPro ODJECTeviiiiiiiiiiieei e 4

EVENE ODJECT ..ttt 6
Parameters ODJECT.......uiiiiiiiiii e 7

POPUPS ODJECT ..t 8

INStANCES ODJECT ... 9
INSEAIIPOPUP ODJECT. ..ottt 10

POPUP ODJECT ... 11

BULtON Tag ODJECT ... 12

IMage Tag ODJECE.uiiiiiiiii e 12
eWebEditPro ActiveX Control ObJeCt...........cevveiiiiiiiiiiiiiie e 13

Image Editor ODJECTcciiiiiiiiieiie e 16

TOOIDAIS ODJECT ...t 18

Media File OBJECT........oviiiiiiiii e 19
ObjectCommand Item ODJECE........cooiiiiiiiiieiiiie e 21

Automatic Upload ODJECEcooviiiiiiiiiii e 23
eWebEditPro APl Cheat Sheetoooiiiiiiiiin, 25
Alphabetical List of Methods, Properties and Events...............cccuevveeeeee. 25

Master List Of MEethOAS.uvviiiiiiiiiiii e 43

Master List Of PrOPErti€Suuuuuieiiiiiiiiiaaiii e 106

Master LiSt Of EVENLSuuiiiiiiiiiiiieeii it 144
COMMANAS .. eeee 157
How Commands are Processedccceviiiiiiiiiiiciiiic i, 157

Sources of COMMANTScooviiiiiiieii e 158

Using eWEDEdItPIrocccoovvviiiiieeeeie e 159
Design and Implementation Guidelinescc........... 159
System REQUIFEMENTS......ccci ittt r e e e e e e ee s 159

Maximum Size Of CONENL........cociviiiiiiiiie e 160

Placing More Than One Editor on a Pagecccccvvvvievieieeeeeeesiiiciinns 160

SAMPIES...ci i 160

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 i

Memory ConsSiderationS...........ccoovvvvveuiiiiiiiie e 160

RECOMMENTALIONS......oiiiiiiiiiiiee e 161
eWebEditPro Dataflowcccoooviiiiiiiiiiiiiiieiis 162
Integrating eWebEditPro into a Web Pagecccceoiiiiiiiiiiiiiiiinee, 162
Content FIOW Diagramuueeeeeeieiieiieeaae e a e 162
1. The Edit Page: Read Content............eueeeeiiiiiiiieaaaaaeieeieeiiines 163
2. The Hidden Field ... 164
3. The onload EVENt ..o 164
4. The onsubmMit EVENL.......oooiiiiiiiiiic e 164
5. The Action Page: Write Contentcccuuvuiiiiiiiiiiieeaeeieies 165
Defining the Toolbar..........ooovviii i, 166
Modifying Configuration Data..............cooiiiiiiiiiiiiiiieieeee e 166
TOOIDAI MENUS ...t 166
Defining the eWebEditPro Toolbar.............ocooiiiiiiiiiiiee 167
Determining Which Menus Appear on the Toolbarccccooeiiiniee 167
Finding a Toolbar Menu’s Internal Name..............oooooiiiiiiiiiinnee. 168
Creating a Custom Toolbar Menu..............eeeeeiiiiiiiiiaiiiiiiiees 169
Removing a Toolbar Menu............ccuuueiiiiiiiiiiii s 170
Removing All TOOIDArS.......coooiiiiiee s 170
Placing a Toolbar Menu on a Row with Another Menu.................. 171
Determining if a Toolbar Menu Should Wrap to the Next Row 171
Creating or Editing the Toolbar Menu Caption............ccccoeeeeiiinnnns 172
Determining Which Buttons and Dropdown Lists Appear on a Menu .. 173
Adding @ Toolbar BULtONeeeiieiiiiiiiaaaaaaee e 173
Adding a Dropdown LiStcooiiiiiiiiiiiiiiieee e 174
Removing a Toolbar Button or Dropdown LiSt...........cccceeiiiiinnnnnns 176
Rearranging Buttons/Dropdown Lists on a Toolbar Menu............. 176
Adding a Space Between Two Toolbar Menu Items 177
Adding a Separator Bar Between Two Toolbar Menu Items.......... 177
Changing the Image that Appears on a Toolbar Button................. 178
Displaying Button Caption TEXL.........coucuviriieiiiiiiiee e 179
Defining the Alignment of Caption TeXtcccccvveriiiiiiieeeniiiinen. 179
Translating Button Captions and TOol TIPSevvvvvieiieeeeeeeeeenennnnnn. 180
Creating a POPUP MENUouiiiiiiiiiiic e 181
Determining which Fonts, Font Sizes, and Headings are Available..... 182
Changing Available FONLS..........cccoocviiiiiiiiiii e 183
Changing Available FONt SIZeS.........cccooviiiiiiiiiiiee 184
Changing Available Headingsccccoviiiiiiiiiiiie 184
Creating a List Item that Generates No Command.................cceeveennne 185
Dynamically Changing the Editor..........cccccceevievvinnnnn. 186
Dynamically Creating Configuration Data on the Server Side 186
Avoiding Problems When Dynamically Changing the Toolbar on the
SBIVET ettt 187

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 ii

Dynamically Changing the Editor on the Client Using JavaScript........ 187

Disabling and Enabling Menu Items within Scriptingccccvvvveens 187
Accessing Menus and COmMmMaNdsSceeeeeiieieeeeeeeeeieeeeeieiiinn 187
Enabling and Disabling a Commandccccoooeveeeiiiiiiieiiiiiiennnn. 188

Customizing the Popup BuUtton.........ccoevveiiiiiiiiiinieeeeens 189

Customizing the createButton Commandeeeeveiiiiiiinianeanannnnnnnn. 190

Customizing Context MeNUScceveevveiiiiieeeeeiee e 192

Removing Commands from a Context MenuU..............cocooiiiiiviniinnenn. 192
Context Menu Commands and their Internal Names 193

Suppressing the ConteXt MENU.........ueviiiiiiiiiiaiiiii e 193

The Toolbar Object Interfacecccccccceeeeeeeiieieiieiee, 194

Defining Menus and Commands..........cccuvvrriiiiiririeereeeee e seeninnnns 194

Toolbar Object Quick Referencecccccvvvveeiviiiiiieeeeee e 194

Command Object Quick RefErenceccccccvveeeeeiiiiiiicceeee e, 194

Yol (] 010 TGz U 1]][O 195

ComMMANT VAIUES ... 195
(31] LoT0]] F= T @] o] i o] g P EEEERUR 195
ethTOOIDAISLYIES ... 196
etbCaptioNAlIGNMENTovivieiie e 196
etbTOOIDArLOCALIONceeeiiiiiiec e 197
etbToolbarModificationsS............ocveeiieiiiie e, 197
etbCommandOPLIONS.uviiiieeee e 198
etbComMmMAaNASLYIESevveeiiiiieee e 198
etbCommandModificationSeeeieiiiiieiieee e, 199
EIDEITOIVAIUBS ... e 199

Modifying the Language of eWebEditPro 201

How eWebEditPro Determines the User Interface Language............. 201

LOCAIE FlES ... 202
Standard Locale FilesSeuveiiiiiiiiiiiiiie s 202

Translating eWebEditPro’s User Interface..........cccccvvvvviviiiiieii e, 203
Displaying the User Interface in a Translated Language................ 204
Translating the User Interface to a Windows-Supported Language.....
205

Languages Supported by WIindOWSooovviviiiiiiiiiiiiii e 215
Terms on the Supported Languages Table.........ccccooeeeiiiieiiiniininnn, 215

Working with non-English Content...........ccccooeviieiiiiiiiiiciiee e, 220
Accented CharacCters..........coccuuiiiiiiiiiiiee e 221

Using the Languages Sample.......cccooooeoiiiiiiieiceicises e 221

Displaying Menus and Dialogs in a non-European Language.............. 221

Setting the Language of Spell Checkingccccooviviiiiiiiiiiiiiin, 223

Modifying Standard Text (including English)oviiiiiiiiiins 223
Location of Translated StringsScccceeeiiiieieeiiieieeeeee e 224
Modifying American English TeXt..........ccoeeiiiiiiieiiiiiiiecee e 225

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 iii

Modifying the Standard Text of a Translated Language 225
Modifying the Standard Text of a Windows-Supported Language. 226

Customizable JavaScript FileS.........ccoovviiiiiiiiiiiiiee, 227
The ewebeditpro.js File ... 227

The ewebeditprodefaults File ... 227

The ewebeditpromessages File ... 228

Disabling the "Click OK to Preserve Changes" Message............... 230

The ewebeditproevents File ... 231

The ewebeditpromedia File............ueviiiiii e 232

Client Installation Pages..........ccvvvviiiieiiiiiiiee e 233
Customizing the Client Installation Pages............ccoooicviiiiiiiieiiiieieeeenn. 234

Disabling the Installation Pages............cocouuiiiiiiiiiiiiiiieeeeee e 235

What Happens When Auto Install Fails or is Cancelled....................... 235
JavaScCript ODJECTScovviiiiiiiiie e 236
The JavaScript Object Model ... 236

JavaScript Object Properties, Methods and Events..............cccccvvveee.n. 236

Event Handler FUNCHIONS.........oviiiiiieiieii e 236
Double-Click Element Handlers ... 237

The eWebEditProExecCommandHandlers Arraycccccoecveeeeeennnnn. 237
ExecCommandHandlersArray Parameterscccccevvvvviveeennnnnn. 238

Parameter Requirements for Commands............cccccveeeeeeeeeniiiiinnnnns 238

The Toolbar Reset Commandcueveiiiiiiiiiieee e 239

Reacting to the Initialization of @ Toolbarccccccceeeeeeiiiiiiiiiiie, 239

When the Event is Sent to the Script........ccccoovveviiiiiiiiieiiieen 239

Using Toolbarreset to Reset Customizationccccceeeveviiiiinnnns 240

The Redisplay Toolbars Command............ccccuvevieiiiiiiiiieeiiieee e 240

The INStaNCe ODJECT......iuiiiii e 240

The ONEITOr EVENT....ccciiiiee e 241

The INStANCETYPES AITAYuviiiiieiiiiiiie ettt 241

The Parameters ODJECT.........ovuiiiiiiii e 242
Parameters Object Propertiescooouvvivieiiiiiiiiee e 242

Installation Popup Window Defaultsccoovvviiiiiiiiiieiiiiieen, 243

Popup WINdow Defaultscooiiiiiiiiiiiiiici e 243
eWebEditProUtil JavaScript ObJECt...........cccvviiiiiiiiieeeee, 243
ACtIVEX CONTIOL oo 245
Accessing the ActiveX Control Using JavaScript.........cccccvvvrvveeereeneenn. 245
eWebEditPro JavaScript ODJECE.........ccccviviiiiieiirieeee e 245

eWebEditPro ActiveX CONtrolcoccveeviiieiiie e 245

Instance JavaScript ObJECE..........uuiiiiiiiiiiiiee e 246

ActiveX Properties, Methods and EVENtS.........cccccceeeeeeiiiiiiciiiiiiieeeen, 246

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 iv

The Configuration Data.........cccceeeeevviiiiiieceiiie e, 248

Managing the Configuration Datacccuvveieeiiieiieeieeeeeeeeee e 248
Editing the Configuration Data...........cccuevvieeiiiiiiiiiieeeeeeee i 248
Providing Configuration Files for User Groups............cocoeeevvvvnnnnns 249
Changing the Configuration Data’s Locationccccccceeevveeiicnnns 250
Troubleshooting Problems with the Configuration Data 250

Organization of Configuration Documentationcccccvveevverieeeeeeenn. 250

Managing the Configuration Dataccccccevvveieeninnnnn. 251

Editing the Configuration Data............cccocuiiiiiiiiiiiieeee e 251

Providing Configuration Files for User GroupsS..........cccovevieiiiiiiccicnnnnns 252

Changing the Configuration Data’s Location.............cccuueeieeeieiieneaeennnn, 253

Troubleshooting Problems with the Configuration Data....................... 253

Letting Users Customize the Toolbarcccccccevvvvennnnn... 254

Allowing User CUSIOMIZALIONcooiiiiiiiiieeiiiiiiie e 255

Preventing Customization by USErS.........cccceeiiiiiiiiiiiiiiiiiice e 255

Overriding User CUStOMIZAtIONvvvveiiiiiiiiiee et 256

Determining Which Configuration Data to USeccccvvveeiiiiiineneenn. 256

Changes to config.xml Have No Effectcccocceiiiiiiii 256

Overview of Configuration Data...........cccccceeeeeeiieeeeeene, 258

Configuration Data: Functional VIEW...........cccccviiiviiiiiiiriiicieeeeeee e 259
Configuration Data: Functional View Topic Listcccoeeviennnns 260

Configuration Data: Hierarchical VIEWcccccviiiiiiiiiiiiiiieeceeee e, 261

Configuration Elements in Alphabetical Order..........ccccccvvveiveeeeeeeeennn. 261

The Config EIEMENtcccoe e 265

The Interface EIeMEeNt........coooiviiiieiiiiiii e 265
Buttons not Assigned t0 MENUS..........cccccuvviiiiiieiieereeee e 266

The Features EIEMENt ..o 266

F (] 01U (= 1Y/ 1= 266
BOOIBAN ...t 266
[T 1 267
S (1 o SRR 267

User Interface Elements: Standard, Menu, and Popup 268

User Interface Element Hierarchyccoevvieiiies 269

User Interface Elements in Alphabetical Order..........cccccccceeiiiiiiiinnnns 270

User Interface Element Definitionscccuevvieiiiiiiiiiiis 271
DAL e e 271
DULEON. . 272
(=T] 1T0] o ISR PPPPURUTRRTRRN 274
COMMANT ...ttt e e e et e e e e ae e e e e e e e e e e aennes 275
(o] 1 0o [T O P UPPUTPPTR 278
[o0] 11 1o OO PPPPUPUTRRTTRN 279
FRALUIES. ..ttt 280
1=V [P PPRUPPTRTTRRRN 281
INEEITACE ... et 282
ISTCNOICE ... 284
01T 01U BT T TP 288
[10] o 10| o T TP PPTPRP 290

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 v

S 0= o = S PPPPPPTN 292
STANCAIT. ...t 293
Sy I e ————— 296
100 1o] I I 01 1= SRRSO 297
BUTtON IMageS .. .o 299
FOrmats SUPPOITEAccooiiiiiiiiiiiiie e 299
SOUrCES Of IMAGES ...coeiiiiiee e 299
Images Supplied by eWebEditProcccuviiiiiiiiiii 299
Creating YoUr OWN IMAQJESuvieiiiiiiieiaaaeaee et e e e 308
Image File EXIENSIONScoooiiiiiiiiiiiie e 308
Size of BUON IMAQJESvuviiiiiiiiiiieeeee e 308
Background Color of Button Images.........ccuueeeeeeeiiiieeeeeaiiiiines 309
Button Image Specification SUMMAry...........c.eeeveeiiiieiiaaainiiienns 309
Managing TablesS ... 310
The Table Element of the Configuration Data............cccccvvvvvvevieeeeeennnnn. 310
Element HIErarChycoooeeeeiiiiiiic e 310
Child EIEMENLS .o e 310
ALFDULES .o 310
Allowing Users to Create Tables.........ccccuveviiiiiiiiiiiieeee e 311
Customizing the Table DialogS........ccooviiiiiciiiiiiiiiiiiere e e 311
Restricting Table OPtioNSvivviiiieeei e 313
Customizing the TableS MENU........ccceeeeieiii e 314
Customizing the Tables Toolbar MENUuuvviieiiieiiiiiiiieeeeee e 315
Setting Default Values for the Insert Table Dialog.........ccccccvveeeeeeeeeennn. 316
Controlling Alignment Field RESPONSESvuvriiiiiiiiiiiriiieeeeeeeeeeeeeeeen 317
Controlling Responses for the Horizontal Alignment Field 317
Controlling Responses for the Vertical Alignment Field................. 318
Fonts and Headers ... 319
OIS e e 319
Element HIerarChyccccoooe oo 319
ALIDULES .. 319
FONTNAMIE .. 319
REMATKS ... 320
Element HIerarChyccccoooe oo 320
ALIDULES .. 320
FONESIZE e 320
REMATKS ... 320
Element HIierarChycccooooe oo 321
ALIDULES .. 321
NEATINGS ..evieiiieie e 321
Element HIerarChycccooooe oo 322
ALIDULES ... 322
NEAAING[X] +vvrreiiee i e a e 322
REMATKS ... 322
Element HIierarChyccccoooe oo 323
ALIDULES .. 324

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 Vi

EXternal FEAtUIESc.e e 325

(DS ot g o] (o] o WP PPURTRTRRTT 325
Element HIerarChy ... 325
ALFIDULES .. 325

Adding External FEatUresccociiiiiiiiiiiiiiiiee e 325
EXAMPIES ... 325

Viewing and Editing HTML Contentccceevvvninns 327

The VIEWAS FEALUIEcoiiiiiiiiiiie e 327
Disabling Custom Toolbar Buttons View as HTML Mode............... 327

The EditHTML FEALUIEcvviii i 328

FOorm Elements ... 330
[LYY ox o] 1o o PSSR 330
Element HIerarChyccccoooe oo 330
ATIDULES .o 330

Cleaning HTML ... 332

Clean Element HIierarChyccccuueiiiiiiiiiiiiieee e 332

Providing User Access to the Clean Featureccccoeiviiiiiiiiiiinnnns 332

Clean EIBMENT ... 333
Element HIerarChy ... 333
Child EIEMENTS ...t 333
ALIDULES . 334

REMOVE EIEMENT ... 338
Element HIerarChy ... 338
Child EIEMENTS ...t 338
ALIDULES ..t 339

ENndtag EIEMENt ... 339
Element HIerarChy ... 339
ALIDULE . 339
EXAMPIE.. .o 339

AUIDULE EIEMENT ... 340
Element HIerarChy ... 340
ALIDULE . 340
EXAMPIE. e 340

Tagonly and Tagelement EIementscooooiiiiiiieiiiiiiee e 340
Element HIErarcChyoccueveiiiiiiie e 340
ALIDULE . 341
EXAMPIE. e 341

TagWOALLN EIEMENT ... 341
Element HIErarcChyocceeveiiiiiiiii e 341
ALIDULE . 341
EXAMPIE. e 341

XSIFItEr EIEMENT ..ooeviiiiiieeeee e 342

The Spellcheck Feature..........cceeeeviiiiiiiiiiiiiiie e, 343

S0 1= o3 1= o1 PSR 344
Element HIErarChy ..o 344
Child EIEMENLS ...eiiiiiiecee e 344
ATITDULES ..o 344

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 vii

SPEIAYL ... —————— 345

Element HIerarChycccooooe oo 346
ALIDULES .. 346
SPElliNGSUGOESTIONvvviieiiiie e 346
Element HIerarChycccooooe oo 347
ALIDULES .. 347
Example of Spell Check Features........ccccoovviieeiiiiiiiiiiiieie e 347
Editing in MicroSoft WOrd ..., 348
Element HIErarchycoi e 348
Child EIEMENTS ...t 348
ALFIDULES .. 349
Using the Long Parameter with cmdmsword............cccccoeiiiiiiinnnns 349
How Microsoft Word Content iS Processed..........cuuveiieieeeaaiaiiniiiiiinns 349
Conserve Word FOrmattingcoooooiiiiiiiiiiiiiiiiiiieeeeeee e 350
CONVEIT SEYIES ..ttt e e e e 351
Conform by DiSCardingccooeieiiiiiiiiiiiiiiieeiee e 352
OPLIONS ettt e e e e e e e e e e e 352
Using Word to Edit XML DOCUMENTS.......ccooiiiiiiiiiiiiiiiiieeeeee e 352
Encoding Special Characters.......ccccooevvevvviiiiiceeeiiinee, 354
Factors that Affect the Display of Special Characters.............ccceeeeennn 354
Viewing and Saving Unicode Characterscccoccveeviiienicinnnene 355
Displaying Asian LanNQUAGESc.uvveieeiiiiiiiee et 356
UNICOAE CharaCterS.......cuiiiiiieeeeei et e e e e 356
Configuring for Extended and Special Characters.............cccocveeeennnnen. 356
charencode AHDULEoviiiieeeeei e 356
Choosing a charencode Value...........ccccoooiiiiiiiiiiiii e 359
Character Encoding CheckIiSt............uvvviiiiiiiiiiiiiicee e 361
UT =8 oottt e e e e e e e e e e 362
How to Store Unicode Characters So They Are Searchable.......... 362
REEIEBNCES ... 363
Implementing a Web Site that Uses UTF-8 Encoding.. 364
IMPlemMENtiNg UTF=8ccooi i 364
IS ettt ettt ettt a e e e et e ———— 365
Setting the charset Parameter..........cococeeiiiiiieeiiiiieeee e 365
Browser Support for UTF=8uuiiiiiiiiiieeeeeeeeeee e 365

For More Information about UTF-8...........cccccuuiiiiiiiiiiiiiiiis 365
Style ShEetsS ...ccvei s 367
Using Style Sheets to Standardize Formatting...........ccccccoeeeeeveviiiieennns 368
The Default Style Sheet ... 368
Changing the Default Style Sheet............cccooviiiiiiiiciccc e, 368
ApPPIYING Style SNEELSccveieec e 368
Specifying a Style Sheet in the Configuration Data 369
Adding a Style Sheet to a Single Page.......c.cccoeeeeiviieeeiiieeeiiiiiinnn, 369

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 viii

Dynamically Changing a Style Sheet for a Single Instance of the

EQIOF e 370
The BodyStyle Parameter.........ooouvuiiiiiiiiiii e 370
Preserving Tags When Office Content is Pastedcceevvvvinnnns 370
Saving Style Sheet Tags When Content is Savedccccevvvvvvvvnnnnn. 371

Setting Publishstyles t0 Tru€cvvvvvviiiiiiiiieeeeeeee e 371

Setting Publishstyles to FalSe...........ccco oo, 371
INserting Span OF diV TAQSccvvviveeiiiiiie e e e e 371
Applying Two Style Classes to the Same Content..........ccccceevevieeeennn. 373

Location of equivClass Attributevveiiieiiiieci e 373

How the Editor Determines if Two Classes Are Equivalent........... 373

New Class is Equivalent to Original Class............ccceevevvveviviiinnnnnn. 374

New Class is not Equivalent to Original Class............cccccvvvvvvnnnn. 374

Forcing Two Classes to be Equivalentcccoovvviiiiiiine e, 375

Tips for Using this Feature..........cccoooviiieiiiiiiiciee e 375
Implementing Style Class SeleCtors.......cccevviieeiiiiiivieiiiceee e, 376

Example of Using Style Class Selectors...........ccccvvvvvviiviiicieeeenn. 376

Types Of Style CIaSSESuuvuuiiiiiiiieeee et ee e 377

Determining Which Style Classes Appear in the Dropdown List ... 377

Determining the Names in the Dropdown List...........ccccceeeiiiieneenn. 378

Suppressing Styles from the Dropdown LiSt.............cvieeiiiiinnneenn. 379

Style Classes and Matching Attributesocevvviviiiiiiiiiiiieeeee, 379

Managing Hyperlink Dialogsccovvviiiiiiiiiiiieceei 382
Customizing Dropdown Lists in the Hyperlink Dialog Box 382

Customizing the Lists of the Hyperlink Dialog BOXccoennes 383

QUICK LINK LISt ..uiiiiiecccceee e 383

TYPE LIST ettt 385

Target Frame LiSt.......oooiiiiiiiiiiieee e 387

Specifying Default Values for the Insert Hyperlink Dialog.............. 389
Editing the New HyperLink Dialog BOXceeeiiiiiiiiiianiiiiiiiiiiiies 390

Editing QUICK LINKSeeiiiiiiiiieeiaiee et 391

Dynamically Creating the Quick Links Filec.ccooiiiiiiiiiiinnnns 391

Managing IMagesooeuiiiiiiiiir e 392
How Image Selection WOrKSoouvviiiiiiiiiiciiiieee e 392
Organization of the Image Selection Documentation..............cccc.ccueee. 393
Customizing the Alignment Field of the Picture Properties Dialog....... 394

Modifying Alignment Field RESPONSESccoviiiiiiiiiiiiiiiieeee 394

Setting a Default Response for the Alignment Field..................... 395

Removing the Alignment Field from the Picture Properties Dialog 395
Examples of Implementing Image Selection...........ccccccovvivveeiiiiiinnnen, 396

Example 1: No Restrictions, No Saving to a Database 396

Example 2: File Size Restriction, No Saving to Database.............. 399

EXaMPIE 31 FTP e 403

Example 4: Database Samples ... 407
Implementing Image Uploadcccoouiiiiiiiiiiiiiiie e 409

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 iX

FTP File UPload........ccoooieiiiieieiieee e 409

HTTP File UPloadcccoooieeieeeiieeeeees e 410
Using EktronFilelO for Your Own Image Uploads............ccoeeeeevevvveenns 414
Step 1: Create a Selection Web Pagecccevevvvviviiiiicii e, 415
Step 2: Create a Form with a File Selection Field Item 415
Step 3: Creating an ASP Page to Activate the Posted Upload...... 417
Step 4: Providing Upload Feedbackcccovvviiiiiiiiiiiiiieieeee, 418
COlARFUSION ...t 421
Manipulating Media File Methods and Properties 423
Using Local or Given Image Path Resolutionscccccccceeniiiiiiiinins 423
BASE URL ..t 424
Given ReSOIULION TYPE ..eeeeeiiiiiiaaaaiee et 424
Programmatically Accessing Media File Properties............ccccvvvvveneeee. 425
Accessing the Media File ODJecCt ..., 425
Using Netscape to Access Image Propertiesccccccceeeiiiiiinnnnns 425
Entry Point for Using External SCriptsccccccoeeeiiiiiiiiiiiiiiiiiiiiies 426
Setting External Page Parametersccccvvvviiiiiiiiiieeeeeiins 427
Changing the Transfer Method on the Flyccccccooiiiiiin, 427
Programmatically Changing from the Default of FTP to the ASP
(] o] = 12T PPPPPPRURUURRTN 428
Specifying an Image to INSertccccuuviiiiiiiiiiieeee s 428
Modifying the Upload DIr€CtOorycccueeveeeiiieiiiiiiiiaaaaeaaeies 429
The Mediafiles Featurecooooeeeiiiiiiiiiieieeeeeeeen, 430
Mediafiles Element HIierarchycccccceeeiiiiiiiiiiiiiiiiiiieceeeee e 430
User Interface Elements in Alphabetical Order........ccccccevveeeeiiiiiiiiccnnns 431
Mediafiles EIEMENT........ccoiiiiiiiiiiiie e 432
[T ot o] 1o o P EEERUSRRR 432
Element HIErarChycoooeeeeiii e 432
Child EIEMENLS .o 432
ALFDULES .o 432
ValideXt EIEBMENTeiiiiiiiiiiee e 432
(1T od] o] 1o o SRR 432
Element HIErarChy ..ot 432
ALFDULES .o 433
EXAMPIE....ccc i 433
MaXSIZEK EIEMENT.......eiiiiiiiiiiiie e 433
[Tt o] 1o o P EERRURRRR 433
Element HIErarChy ..ot 433
ALFDULES .o 433
Mediaconfig EIEMENTuveiiiiiiiiie e 433
(1Tt] o] 1o o P EEERUSRR 433
Element HIErarChyooooeeeeiiiiiii e 433
ALFDULES .o 434
EXAMPIE.....ccc i 434
TransPort EIEMENt........coooe e 434
(1St o] 1o o P EEERUSRR 434
Element HIErarChy ..o 434

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 X

(O o1 [0 I = (=T 4 1= £ 434

ALIDULES .. 435
Autoupload EIEmMENt..........oovviiiiiiiiie e 435
[1YY ox o] 1o o P RSSS 435
Element HIerarChycccooooe oo 435
ALIDULES ... 436
Username EI@MENToueiiiiiiiiii e 439
[1YY ox o] 1o o PRSP 439
Element HIerarChycccooooo oo 439
ALIDULES .. 439
PasSWOrd EI@MENTuuiiiiiiiiiiiieee e 439
[1YY ox o] 1o o PSS 439
Element HIerarChycccoooie oo 439
ALIDULES ... 440
Proxyserver EIement.........coooviiiiiiiii e 440
1YY ox o] 1o o PSS 440
Element HIierarChycccooooe oo 440
ALIDULES ... 440
Domain EIEMENT ... 440
[1T ox o 1o o PSR 440
Element HIierarChycccooooo oo 440
ALIDULES .. 441
XFerdir EIEMENT ... 441
[T T Yol o] 1o o PSS 441
Element HIierarChycccooooe oo 441
ALIDULES ... 442
WeEDBIOOt EIEMENT ... 442
[T TSYox o 1o o PR 442
Element HIerarChyccccoooe oo 442
ALIDULES ... 443
Defsource EIBMENTuuiiiiiiiiiiiiaee e 443
LTS ox o] 1o o PSS 443
Element HIierarChycccooooe oo 443
ALIDULES .. 443
POMt EIEMENT ..o 443
[T TSYox o] 1o o PR 443
Element HIerarChyccccoooe oo 443
ALIDULES .. 444
Resolvemethod Element ... 444
LT ox o] 1o o PSS 444
Element HIierarChyccccoooeo oo 444
ALIDULES .. 445
Imageedit €leMENtcooiiiiic e 445
[T TYox o] 1o o PSS 445
Element HIerarChyccooooie oo 445
Child EIEMENTS ... 445
CoNtrol EIEMENT ..o 445
[1T Yol o 1o o PSS 445

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 Xi

Element HIerarChycccooooe oo 445

ALIDULES .. 446
Setting up an Image RepoSIitoryccccccvvvvvvvviiivnnnnnnnne. 447
The Image Repository FOIder ... 447
Inserting an Image into @ Web Page........cccccceeiaiiiiiiiiiiiiiiiiiiiieeeeee 448

EXAMPIE.. .o 449
Dynamically Selecting Upload Destinations................ 450
Setting Up Image Upload..........ccccvviiiiiiiiiiicc e 450

Media File ODJECL.....uuiiiiiiiiiiie e 451

Modifying the Upload LOCAtIONuvuviviiiiiiiieiieeeeeeeie s 451

SamMPle HTML PAgE ...uvvviiiiiiiiiiiee et 452

User Selection — Changing the Upload Location................ccccvvees 453

FUIL EXAMPIEt e e e e e e e 454
Automatic Uploadcccoovieeiiiiiiiiiiiiiicie e 457
Automatic Upload of Files and Images from an External Application .. 457
Installing the Automatic Upload Featureccoovvvviviiiiciciiie e, 459
Modules that Enable Automatic Upload...............cccceeeeiiiiiiiieeieiieieieees 459

An Example of Customizing Automatic Uploadcccoveeenns 459
cmdmfuuploadall Command ... 460
Overview of the Automatic Upload Process..........ccccceeeeeiieeeeeveveeennnnnnn. 460

The Upload ProCESSuuvuiiiiii e a e e e 460
Information COMPONENTS..........cuvuiiiiiiiiie e 462

(000] 0 [o1= o £SO SOTPPTTR 462
eWebEditPro Fields Sent with POSt ..ot 463

Image Upload FieldS............coooiiiiiiiieicee e 463

CUSTOM FIEld SeL....uiiiiiiiiiiiiiiieeeee s 466

Example HTML FOrM ... 466
Creating an Automatic File Receive SCriptccccoeveviiiiieeiieieeeiiiinn, 466

What This SeCtion COVEIScooiiiiiiiiiiiiiiiieie et 467

What This Section Does NOt COVEI.......euuvieiiiiiieiaiiiiiiiiiiiieeeee 467

The Automatic Upload Server-Side Receiving Module 467
Steps to Receiving @ Fileooiiiiiiciie e 467

Step 1 — Act on the Command..........cccceeviiiieeeiiiiiiiee e 468

Step 2 — Extract the File Informationcccoovviiiiiiii e 468

Step 3 — Determine the File Destination..............ccccccvvieiiieiieeeeeen, 468

Step 4 — Extract the File Binary and Save...........cccccceeeeiiiiiieeeeeenn, 469

Step 5 — Build the Return XML Data.............cceevvvivveviiiiiiiiieieeeeen, 469

Step 6 — Respond Back to the Client.............cccovvvvvviciiieie e, 471

Creating the SCrPL......ccoci e 471

Data ISIand ... 471
Steps to Receiving CONteNt........cooiiiiieeieiiieiceece e 476

Step 1 - Act onthe Commandccceeiiiiiieeeiiiiii e 476

Step 2 - Extract the Contentovvvviiiiiiiiieeeece e 476

Step 3 - Save the Contentovvviiiiiiiii e 476

Step 4 - Return @ RESPONSEiiiiiiiiiiiiiiiiiie e 476
EWePAULOSVI ODJECE AP ..o 477

CleNtMAJOIREV ... e 477

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 Xii

ClIENTMINOTREY ... e 477

EKFIESAVE ... 477
EKFIESAVEZ 478
EKFOrMEIeldValue ... 480
EKFIESIZE. ...t 480
1110 o] = o SR 481
FIECOUNT ..t 481
RESPONSEDALA.......uuiiiiiiiiiii e 481
EKFIIEODJECT APl ..ottt 481
[T ox o 1o o PSS 482
FIEDIMENSIONS ...ttt 482
FHEETTON ...t e e e 483
FIIEID .t 483
FIENGIME ... 484
FIESIZE .. 484

L 1T Y/ oL T 484
FHEUIL .t 485
Fragment ... 486
ThUMBNAIL. ... 486
ThUuMBRETEIENCE ... 487
XML Element DeSCHPLIONS.....ccccieeeiiieieeeeeieis e 488
DBORDER......citiiiiiiiiiie ettt 488
DESC .ottt ettt 488
DHEIGHT L.t 489
DWIDTH .ttt e e e e 489
FERROR ...ttt et 489
FID et 489
FILEINFO L.ttt e e 490
FRAGMENT ..ottt e e 490
FSIZE oo 491

F SR C ettt 491
FTYPE oo e 491
FURL ©ctte ettt e e e e e et e e e e e 492
THUMBNAIL ...ttt aeee e 492
THUMBHREFcoiiiiiiiiiii ettt 492
UPLOAD ...ttt e e e e e 493
Image Upload Response Example with Proprietary Information.......... 493
ColdFUSION EXaMPIE.....ccoeeeiiiiiiiiei e 494
ASP EXAMPIE it 496
Automatic Upload ObjJeCt........ccevvvviiiiiiiiiiiiiiiiiiie, 499
Media File Object Properti€s.uuuvieiiiiiiiiieeiiiiiieee e 499
Automatic Upload Object Properties as a Subset of the Media Object
SBHINGS. ¢ttt 499
Content Uploadcooiiiiiiiiii e 500
Retrieving Content from eWebEditPro.........ccccevviiviiiiiiiiiie e 500
The Content Upload ComMmaNndccueveeiiiiiiiieiiiiiee e 500

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 xiii

Content SEttiNg APooveeiiiie e 501

Automatic Upload Object Interface Properties.........cccccceeeeeeieiieeeeennnnns 501
JavaScript EXamMPIEueiiiiiii e 502
Fields in the POSted FOIM ... 502
Steps to Receiving CONteNt........cociiiiieeieiiieieeee e 504
Step 1 - Act onthe Commandcccceeviiiiieeiiiiiii e 504
Step 2 - Extract the Contentcvvvviiiiiiiiieee e 505
Step 3 - Save the Contentovvvviiiiiiiii e 505
Step 4 - Return @ RESPONSEviiiiiiiiiiiiiiiie e 505
The ReCEIVING PAgE.......uiiiiiii e 505
Creating a Receiving Page...........ooouvviiiiiiiiiieeeccceeeei e 506

(O00] 117 01 B 1Y/ 012 ST SPPPPTR 507
What Happens if a Content Type is Not Supported.............ccceene.. 507
Content Type Categori€S.......covvvvruuiiiiiiiiiieeeeee e e 507
How Content Type is Determined.........cccceeveeeeeeeiiiveeiiiiiiceee e, 508
WebImageFX........ccoo 510
Using the WeblmageFX ObJect............ocoiiiiiiiiiiiceee e 511
Assigning Configuration..............eeeeeiiiiiiaai e 511
Retrieving the ODJECT ... 511
Checking Availabilitycceiiiiiiii e 511
Displaying WeblmageFX ... 512
Controlling WeblmageFX ... 512
FUIL EXBMPIE ...ttt 512
Adding a Toolbar Button to Launch WeblmageFX............ccccccvviivienneee. 513
New Configuration Variable ... 513
WeblmageFX’s Configuration Data..............eeveeeiiiiiiiiainiiiiiiiiiieeeee 514
FMECNANGE ...t 515
Lo ol (T LT PPPPPPRURUTRPTN 516

1 gTo =T L1 TP PPPPPPRURUTRRRR 516
IMOTME. e 517
NAMECNANGE ... e 517

(o] 01T =140 1S TP PUPPRURTTRTN 518
VAIFOIMALS ... 519
VaAlOUFOIMALS ... 520
IMAge NAMES ... 521
Specifying Image FOrMat...........oooiiiiiiiiiiiiiiiie e 523
Specifying Color DEPthccoiiiii s 523
Methods to Manipulate WeblmageFX..........ccoooiiiiiiie 523
Events to Manipulate WeblmageFX..........coooiiiiiiiiiiie 525
Commands Unique to WeblmageFX ...t 526
The IData Parameter ... 528
Client Script Interface for Automatic File Upload........ 529
Initializing the Automatic Upload.............ccooeiiiiiiiiiiiiiiiiieeiieeee s 529
INterface REtHEVAl..........ouuiiiiiieiiee e 529
PrOPEITIES ...ttt 529
AOWUPIOA. ... 529

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 xiv

WEBROOT. ... e 529

ValIAEXIENSIONS ..eveiiiiiiieeee ettt 530
TranSTEIrROOT.cviiiii e 530
PO s 530

(0T |1 01 =T=To U] f=To [PPSR 530
LOGINNAIME ...t e e e e e 530
PaSSWOIA.. ..o 530
TransferMethod ..o 530
SEIVEINGIME ..o e 530
MEENOTUS ...t 530
GetFileDescription(FIleName)ciiiiiiiiieeeicieeeeee e 530
SetFileDescription(FileName, Description)............ccccvvveieieiieeeeeenn. 530
ReadResponseHeader().........c.uuuuruiiiiiiiiiiee e 531
AddNamedData(FileName, DataName, DataValue)...................... 531
ReadNamedData(FileName, DataName)............ccccccvvvviieiiineeeennn. 531
RemoveNamedData(FileName, DataName)cccccceeeeeeeeeeeennn, 531
GetFileStatus(FIleName)oovvvviiiiiiii e 531
SetFileStatus(FileName, Status)...........ccceevvevveveeviiiiic e, 531
ReadUploadReSpONSE()covvverrriiiiiiiiie e eeeeeee e 531
UploadConfirmMsg(Message, Title)ccoeeviiiiiiiiiiiiiiciee e, 531
SetFieldValue(DataName, DataValue)cccccovvvivviiiiiieieeeeen, 531
GetFieldValue(DataName)ccccoeiieieiiiiieeeeeieeeees e 531
RemoveFieldValue(DataName).............cccccceeeiiiiieeeeiieeeccceee e 531
AddFileForUpload(LocalFileName, Description)vvvvvvennnn. 531
ListFilesWithStatus(Status, Delim).........ccccoeeiiiieeiiiiiiiceeee e 531
RemoveFileForUpload(LocalFileName)cccccovveviiiiicieiee e, 532
Property Setting Methodsoovviiiiiiiiii e 532
Integrating eWebEditProc.ccoooiiiiiiiiii e, 533
Integrating eWebEditPro with ASP ..., 534
Using the Sample Pagesoovuuiiiiiiiiiieee e 534
Creating YoUr OWN PAgEuuvveiiiiieieeeeeieieeeei s e e e ee e 534
Including a Reference to ewebeditpro.asp......cccceveeeeevevvveeeiiiiiiieee e, 534
Entering a Relative Path............ccoooviiiiii e, 534
Entering an Absolute Path............ccccooviiiiii 534
Setting UP @ FOMM ..o 535
Placing the Editor on the FOrmcccooiiiiiiiiiiiiieeee e 535
Changing Parameter ValuesS........ccccovviiiiiieeiiiiiiee e 536
Inserting the Editor as @ BOXccovvvvviiviiiiiiiiii e, 536
Inserting the Editor as a Buttoncooviiiiiiiiie e, 537
Adding a Submit BULtONccooiiiieieee e 538
Integrating eWebEditPro with ASP.NET...............ccc.. 539
Using the Sample Pagesoooiiiiiiiiiiiiiiiie e 539
Integrating eWebEditPro on an ASP.NET Pagecccccovcveiiiiinenne 539
USING 8 FUNCLION.eiiiiiiiiiiiiiice e 540
Using a Custom User CONtrol...........cooouviiiieiiiiiiiiie e 541
Using a Custom Server CoNntrol..........ccuveveeeiiiiiieeeeiiieeeee e 543

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 XV

Declaring the Schema File...........ccocoeeiiiiiiiiiiices e, 550

Integrating eWebEditPro with ColdFusion 551
Creating YoUr OWN PAQJEuuuiiiiiiiiiiiiiaeaae ettt 551
Setting UP @ FOMM ..o 551
Calling the eWebEditPro Custom Tag........cccovviviiiiiiiiiiiiiieieeeee e, 551
First Time Installation of eWebEditProccocccccni, 551
Adding @ SUbmMIit BULEONooooiiiiiee e 552
eWeDEditPro’s CUSIOM Taguuvuriiiiiiiiiiieeieaaae e 553
Custom Tag AUIDULESoeeiiiieiieeai e 553
Integrating eWebEditPro with JSP ..., 557
Using the Sample PAgESovvviiiieeeii e e e 557
Creating YoUr OWN PAQJEuuviiiiiiiiiiiieiieee e e e s seserreae e e e e naeaaeeea e 557
Including a Reference to ewebeditpro.jSp ... veevccciviiiiiiiiieeeeeeee, 557
Setting UP @ FOMM ..ot ee e e e e e e e 557
Placing the Editor on the FOrmooooiiiiiiiiiieeecceeee e 558
Changing Parameter ValUuesS...........cccoovviiiiiiiiiiiiiiiiieeee e 558
Inserting the EdItOrcoooiii e 559
Adding a SubmMit BULEONcoooiiiiiee e 559
Integrating eWebEditPro with PHPccccinii, 560
Using the Sample Pagesoovuuiiiiiiiii e 560
Creating YoUr OWN PAgEuuvvriiiiiiieeeieie et e e ee e 560
Including a Reference to ewebeditpro.phpcooeeeviiiiiiiiiiciiie e, 560
Setting UP @ FOMM....ooooieeeeeee e 561
Placing the Editor on the FOrmccccooeiiiiiiiiiiiieeeee e 561
Changing Parameter Values.........cccooeviiiiiieiiiiiieee e 562
INserting the EdItOrvuiiiiiie e 562
Adding a Submit BULtONccooiiiiiciee e 563
Integrating eWebEditPro Using JavaScript................. 564
Using the Sample Pages ... 564
Formats for Placing the Editor on the Pageccccccoiiiiiiiiiiiiiiiis 564
Creating YoUr OWN PAJEuuuiiiiiiiiiiiiiaeeae et 566
Create an HTML Page with Header and Body Tags...................... 566
Include the eWebEditPro JavaScript Fileccccoviiiiiiiiiiiinnnn, 566
Enter a FOrm Element ... 566
Changing Parameter Values..........cccveeeiiiiiiiiiiiiiiceeeiiee e 566
Inserting the Editor as @ BOXccooviiiiiieiiiiiiiiiee i 567
Inserting the Editor as a BUttonccooviiiiiiieiiiiiiiec e 568
Encoding Characters in the Value Attribute..............ccccoeieiiinnnn. 569
Loading the CONtENL.......coiiiiiiiie i 571
Detecting the Load Methodcoooiiiiiiiiiiii e 571
Manually Loading Content into the Editor..........ccccccceeveeiiiiiiiiinnns 572
Saving the CONENEeeeiiiiiie e 572
Detecting when the Save Method is Invokedcccooeviiiinnnns 572
Terminating the Save Method............ccccooiiiiiii 573
Saving Content Manually...........occoviiiiiiiii e 573
Closing a Window without Saving Content...........ccccoovvvveveeennnnnn. 573
Prevent Detecting the onsubmit EVENtccccceeeiiiiiiiiiieeiniinn, 573

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 XVi

Prevent Detecting the onbeforeunload/onunload Event................ 573

Preventing the Save Caused by an onbeforeunload Event........... 573

Saving from One Instance of the Editor..............covvviiiiiiini e, 574

Detecting When the Popup Editor is Activated............ccccceeeeeerenne. 575

TeStING the PAJE ...vvvvieiii i 575
APPENAICES .o e 576
Appendix A: Naming the eWebEditPro Editor.............. 576
Appendix B: Error MeSSagesccccevvevvvieeeeiiie e 577
Appendix C: eWebEditPro Architecture...........cccce........ 583
Appendix D: Automatic Upload File Types.......ccccun..... 585
IMAGES ..t e e e et 586

AUIO ...t e e e aaaaaaes 588

[V 4T L= o O PR URPRPPPPPRINt 589
=2 RSP RSPPTPPN 590

Application (file for a specific application)ccccceiiiiiiiiiiiiiiiiiieeee, 591

OB e e ————————————— 598

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 XVii

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 xXviii

Introduction

This documentation provides Web developers with information they need to
deploy and customize eWebEditPro. It explains how to perform common tasks,
such as removing a button from the toolbar and creating a custom command.

IMPORTANT! Two key sections that you must read are "eWebEditPro Object Model” on page 2
and "eWebEditPro APl Cheat Sheet” on page 25. They describe how to
customize eWebEditPro using the API.

The documentation also describes how to work with the following files.
® JavaScript files

® the JavaScript objects

® the ActiveX control

® the localization files

® the configuration file

® ewebeditpropopup.htm

After you install eWebEditPro, these files reside in your ewebeditpro5
directory.

NOTE Typically, you would not change the JavaScript files. Instead, you would create a
new file, define a set of functions, and include this file in the HTML. You could also
define the functions directly in the HTML file.

Finally, the documentation explains other topics such as the image upload
feature, style sheets, encoding special characters, and how to integrate
eWebEditPro onto a Web page using JavaScript.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 1

-————————— —— — — — — — — — — — — — — — — —

eWebEditPro Object Model

T e ———————— ¥

Javascript
Cllent
i ——— o e e > g ——————————————
ewebeditpro eWehEditPro
events util
evWehEditPro
|
l l 1 l
event parameters popups instances
.|
|
l l l
Installpopup Popup buttonTag editor
|
|
|
image tag :
1
|
T . S . E E E E — — — — — | —————————————— —
Javascript Layer :
e ———— o — — - : o] ————————— -
-
{ eVVebEditPro
1 control
|
|]
| | | |]
1
: ImageEditor ¥ML object Toolhars MediaFile
|
1 I_I
ActiveX Layer : rl L'
I XML data Command Automatic
I ohject item Upload
1

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1

NoOTE

Methods, properties and events in the XML objects and XML Data object are only
available with eWebEditPro+XML.

ewebeditproevents Object

Description: Lists eWebEditPro events.

Hierarchy Location:
JavaScript Client

+-->ewebeditproevents

Child Objects: none

Syntax for retrieving object:

ewebeditpro.event

For example:

eWebEditPro.onready = "initTransferMethod(eWebEditPro.event.srcName)";

For more information see: "Event Handler Functions” on page 236; "Double-
Click Element Handlers” on page 237

Name API Type Return Description Details
Type

eWebEditProReady event Indicates it is safe to send commands to or access 153
the MediaFile Object.

eWebEditProExecCom | event JavaScript that is called after an internal command is | 153

mand executed, or when an external command should be
executed.

eWebEditProMediaSele | event Lets you add a media file handler. 154

ction

eWebEditProMediaNoatifi | event

cation

eWebEditProDbIClickEl | event Occurs when a user double-clicks a hyperlink, applet, | 154

ement object, image or table within the editor, unless a
specific event handler for hyperlink, image or table is
defined.

eWebEditProDbIClickHy | event Occurs when user double-clicks a hyperlink. 155

perlink

eWebEditProDblClicklm | event Occurs when user double-clicks an image. 155

age

eWebEditProDblIClickTa | event Occurs when user double-clicks a table. 155

ble

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 3

eWebEditProUtil Object

Description: Offers utility functions.
Hierarchy Location:

JavaScript Client
+-->eWebEditProUtil JavaScript
Child Objects: none

Syntax for retrieving object:
eWebEditProUtil;

For more information see: “eWebEditProUtil JavaScript Object” on page 243

Name API Type Return Description Details
Type
editorName property Holds the name of the editor that opened the popup. | 143
getOpenerinstance method Returns a reference to Instance JavaScript object 70
responsible for opening the popup.
HTMLEncode method HTML encodes the given string. 74
isOpenerAvailable method Determines if page that opened the popup is still 78
open.
languageCode property The language code of the browser. 143
queryArgs property The array of URL query string parameters passed to | 143
the page.
eWebEditPro Object
Description: Lets you add custom properties dynamically at run-time.
Hierarchy Location:
JavaScript Client
+--> eWebEditPro JavaScript Object
Child Objects: event, parameters, instances, popups
Syntax for retrieving object:
eWebEditPro;
For more information see: “JavaScript Objects” on page 236
Name API Type Return Description Details
Type
{editor name} property A reference to an instance of the eWebEditPro 139
ActiveX control.
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 4

Name APl Type Return Description Details
Type

actionOnUnload property Determines how content is saved when Web page is | 139
unloaded.

addEventHandler method Defines event handlers for ewWebEditPro events, 43
such as onready.

autolnstallExpected method Indicates if an automatic download and installation of | 48
eWebEditPro is expected.

create method Creates an instance of an in-line editor in the page. 53

createButton method Creates an instance of a button which, if clicked, 53
opens a popup window with the editor in it.

defineField method Loads more than one content field into the editor. 607

edit method Opens a popup window with the editor in it. 55

EstimateContentSize method long Estimates the size of current content. 60

installPopup property boolean If true, a window with the intro.htm page pops up. 140

instances collection property An array of in-line editor objects of type 140
eWebEditProEditor or eWebEditProAlt.

isAutolnstallSupported property boolean If true, eWebEditPro can be automatically installed. | 140

isChanged method boolean Determines if editor content has changed. 75

isEditor method boolean Indicates if an instance of an editor exists by the 76
given name, and if the instance has a valid 'editor’
property.

isInstalled property boolean If true, eWebEditPro is installed. 140

isSupported property boolean If true, eWebEditPro is supported in this 141
environment. It may not be installed yet.

load method Loads content into all in-line editors on page from 82
standard HTML elements with the same name.

onbeforeedit event Occurs when the onbeforeedit method is invoked. 150

onbeforeload event Occurs when the load method is invoked. 150

onbeforesave event Occurs when the save method is invoked. 150

oncreate event Occurs when the create method is invoked. 149

oncreatebutton event Occurs when the createButton method is invoked. 149

onedit event Occurs after the popup window closes. 150

onerror event Occurs when an error occurs because the save 152
method failed.

onload event Occurs when the load method is complete. 151

onready event Occurs when it is safe to send commands or access | 152
the Media File Object.

onsave event Occurs when the save method is complete. 151

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 5

Name APl Type Return Description Details
Type

ontoolbarreset event Occurs when the editor's toolbar is initialized or reset. | 151

openDialog method Opens the popup Web page specified by fileName. 84

parametersobject property An object of type eWebEditProParameters containing | 141
the default set of parameters used when creating an
instance of the editor or button.

refreshStatus method Updates the value of several properties such as 89
status, islE, and isNetscape,

resolvePath method Prepends the URL with the eWebEditPro path. 91

save method Saves content into all in-line editors on page from 92
standard HTML elements with the same name.

status property Reflects the current state of eWebEditPro. 141

upgradeNeeded property boolean If true, an older version eWebEditPro is installed 142
and needs to be upgraded.

versioninstalled Property Retrieves the version of the control. 125

Event Object

Description: The eWebEditPro.event object is available during an event. Its
properties are determined by the event.

Hierarchy Location:

eWebEditPro JavaScript Object
+-->event

Child Objects: none

Syntax for retrieving object:
eWebEditPro.event;

For more information see: “JavaScript Objects” on page 236

Name API Type Return Description Details
Type
onbeforeedit event Occurs when the user clicks the button created by | 150
the createButton method.
onbeforeload event Occurs when the load method is invoked. 150
onbeforesave event Occurs when the save method is invoked. 150
oncreate event Occurs when the create method is invoked. 149
oncreatebutton event Occurs when the createButton method is invoked. | 149
onedit event Occurs after the popup window closes. 150

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 6

Name APIType | Return Description Details
Type
onerror event Occurs when an error occurs because the save 152
method failed.
onload event Occurs when the load method is complete. 151
onready event Occurs when ut is safe to send commands or 152
access the Media File Object.
onsave event Occurs when the save method is complete. 151
ontoolbarreset event Occurs when the toolbar is initialized or reset. 151
srcName property The name of the instance of the editor that is the | 129
source of the current event.
type property The name of the current event without the "on" 129
prefix.
Parameters Object
Description: The eWebEditPro.event object is available during an event. Its
properties are determined by the event.
Hierarchy Location:
eWebEditPro JavaScript Object
+-->parameters
Child Objects: installpopup, popup, Button Tag
Syntax for retrieving object:
eWebEditPro.parameters
For more information, see: "The Parameters Object” on page 242
Name APl Type Return Description Details
Type
buttonTag property Object consisting of 129
« eWebEditProDefaults.buttonTagStart
« eWebEditProDefaults.buttonTagEnd
* eWebEditProMessages.popupButtonCaption
See Also: "Button Tag Object”
cols property The number of columns in the TEXTAREA element if 130
eWebEditPro is not installed or not supported.
editorGetMethod property Lets you save either the body only or the entire HTML | 144
document from the editor.
embedAttributes property Optional attributes to the EMBED tag. 130
locale method Specifies the locale file to use. 83
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 7

Name API Type Return Description Details
Type

maxContentSize property The largest number of characters that can be saved in | 130
editor.

objectAttributes property Optional attributes to the OBJECT tag. 131

onblur event An event that fires when the editor loses the focus. 149
Important! This event does not work with Netscape or
Firefox.

ondblclickelement event The JavaScript event that occurs when a user double- | 148
clicks any selectable element object.

onexeccommand event The default JavaScript onexeccommand handler. 148

onfocus event An event that fires when the editor gains the focus. 148
Important! This event does not work with Netscape or
Firefox.

path property The path to the eWebEditPro files relative to the 131
hostname.

preferredType property Specifies the type of editor to create. 131

readOnly property Prevents the user from modifying the editor content. 132

relocate method Relocates the 'on' event handlers to point to the frame | 89
where the functions are defined.

reset method Reinitializes all values to the default defined in 91
eWebEditProDefaults (ewebeditprodefaults.js).

rows property The number of rows in the TEXTAREA element if 132
eWebEditPro is not installed or not supported.

textareaAttributes property Optional attributes to the TEXTAREA tag. 132

Popups Object

Description: An array of objects that tracks the number of "popup” editors. A
popup editor is created when the createButton method is called and when the

"section” editor is created.

The array can be used to determine if any popup windows are open.

Hierarchy Location:

eWebEditPro JavaScript Object

+-->popups

Child Objects: none

Syntax for retrieving object:

eWebEditPro.popups[sPopupName];

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

Name API Type Return Description Details
Type

query property A query to pass parameters to the popup window. 135

url property The URL to the Web page that contains the editor 135
that appears in the popup window.

windowFeatures property The parameters passed to the standard JavaScript 135
window.open() method.

windowName property The name assigned to the popup window created by | 136
the standard JavaScript function window.open().

isOpen method Can count the number of open popup windows. 77

Instances Object

Description: Methods, properties and events that function as they do with the

eWebEditPro object but only apply to this instance of the editor.
Hierarchy Location:

eWebEditPro JavaScript Object

+-->instances

Child Objects: eWebEditPro ActiveX Control Object

Syntax for retrieving object:

eWebEditPro. instances[sEditorName];

For more information see: “The Instance Object” on page 240

Name API Type Return Description Details
Type
addEventHandler method Defines event handlers for ewWebEditPro events, 43
such as onready.
editor property A reference to the eWebEditProActiveX control. 136
elemName property The name of the field element that contains the editor 136
content.
formName property The name or index of the form that contains this 136
instance of the editor.
height property The height of the editor assigned when created. 137
html property A string containing the HTML. 137
id property The name of the eWebEditPro editor elementin the | 137
object (Internet Explorer) or embed (Netscape) tag.
insertMediaFile method Inserts an image file (or other media file) to the editor. 74
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 9

Name APl Type Return Description Details
Type

isChanged method boolean Returns true if content in any editor on the page was 75
modified.

isEditor method boolean Returns true if the .editor object is available. 76

load method Loads content into editor. 82

maxContentSize property The largest number of characters that can be saved in | 137
the editor window.

name property The name assigned to this instance of the editor when it | 138
was created.

onbeforeload event Occurs when the load method is invoked. 150

onbeforesave event Occurs when the save method is invoked. 150

onerror event Occurs when an error occurs because the save method | 152
failed.
See Also: "The onerror Event”

onload event Occurs when the load method is complete. 151

onsave event Occurs when the save method is complete. 151

readOnly property Prevents user from modifying editor content. 138

receivedEvent property boolean “True” if an event has been received from ActiveX 138
control.

save method Saves content. 92

status property The status of this editor. 138

type property Indicates which type of editor was created on page. 138

width property The width of editor assigned when created. 139

InstallPopup Object

Description: This set of defaults determines the attributes of the instance of
eWebEditPro that appears as a popup window.

Hierarchy Location:
eWebEditPro JavaScript Object
+-->parameters
+-->instal IPopup
Child Objects: none
Syntax for retrieving object:

eWebEditPro.parameters. installPopup;

For more information see: “Parameters Object” on page 7

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 10

Name API Type Return Description Details
Type
close method Closes popup window.
open method Displays page specified by the installPopup parameters
in popup window.
popup property Lets you pass four parameters to popup Web page. 133
query property An optional parameter that specifies query string alues | 135
to pass to page specified by URL parameter.
url property Specifies URL of Web page to display in popup window | 134
when an automatic installation is expected.
windowFeatures property Specifies popup window features as defined for 134
standard JavaScript window.open() method.
windowName property Specifies the name of the popup window. 134
Popup Object
Description: These defaults determine how the popup window is launched.
Hierarchy Location:
eWebEditPro JavaScript Object
+-->parameters
+-->popup
Child Objects: none
Syntax for retrieving object:
eWebEditPro.parameters.popup;
For more information see: “Parameters Object” on page 7
Name API Type Return Description Details
Type
query property A query to pass parameters to the popup window. 135
url property The URL to the Web page that contains the editor | 135
that appears in the popup window.
windowFeatures property The parameters passed to the standard JavaScript | 135
window.open() method.
windowName property The name assigned to the popup window created 136
by the standard JavaScript function window.open().
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 11

Button Tag Object

Description: Lets you determine the form of the popup edit button.
Hierarchy Location:
eWebEditPro JavaScript Object
+-->parameters
+-->buttonTag
Child Objects: image tag
Syntax for retrieving object:
eWebEditPro.parameters._buttonTag;

For more information see: “Customizing the createButton Command” on
page 190

Name API Type Return Description Details
Type
End property Determines the end of the HTML that appears on | 127
the popup edit button.
Start property Determines the beginning of the HTML that 127
appears on the popup edit button.
tagAttributes property Used to assign custom attributes to the popup 128
edit button.
type property Determines the form of the popup edit button. 128
value property Determines the value of the popup edit button. 128
Image Tag Object
Description: Lets you customize the image that appears on the popup edit
button.
Hierarchy Location:
eWebEditPro JavaScript Object
+-->parameters
+-->puttonTag
+-->imageTag
Child Objects: none
Syntax for retrieving object:
eWebEditPro.parameters.buttonTag. imageTag;
For more information see: “Customizing the createButton Command” on
page 190
Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 12

Name API Type Return Description Details
Type
alt property Determines the alt text that appears on the 127
popup edit button.
border property Determines the size of the border on the popup | 127
edit button.
height property Determines the height of the popup edit button. | 127
src property Determines the source of the image that 127
appears on the on the popup edit button.
width property Determines the width of the popup edit button. | 127
eWebEditPro ActiveX Control Object
Description: Lets you control eWebEditPro’s functionality and content
Hierarchy Location:
eWebEditPro JavaScript Object
+-->instances
+-->eWebEditPro ActiveX Control
Child Objects: Image editor, XML Object, Toolbars, Media File
Syntax for retrieving object:
eWebEditPro. instances[sEditorName].editor;
For more information see: “ActiveX Control” on page 245
Name API Type Return Description Details
Type
addInlineStyle Style Sheet | string Adds an inline <STYLE>... </STYLE> to 44
Method document header.
addLinkedStyleSheet Style Sheet | string Adds linked style sheet reference to document 45
Method header.
BaseURL Property string This property sets the current URL of the editor to | 128
the specified location.
bodyStyle Property Cascading style sheet (CSS) attribute values. 121
BodyStyle Style Sheet | string Sets/gets the document's body style. 48
Method
CharSet Property The charset value for a page. 122
ClearStylesFromTags Style Sheet Removes style attribute from all tags in 49
Method document.
Config Property The URL of the config XML file. 122
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 13

Name APl Type | Return Description Details
Type
disableAllStyleSheets Style Sheet Enables or disables all style sheets for an editor. | 55
Method
Disabled Property boolean When set to true, the editor is disabled. 122
disableStyleSheet Style Sheet Enables or disables linked or inline style sheet as | 54
Method identified by its title.
ExecCommand Method Causes the editor to perform the specified 62
operation.
Focus Method Programmatically sets focus to eWebEditPro 63
editor using JavaScript.
Get WDDX Property string Sets or retrieves assigned WDDX data. 124
GetActiveStyleSheetTitles Style Sheet | string Returns a comma-delimited list of the titles of 63
Method active styles.
getBodyHTML Method Saves content within the BODY tags as HTML. 64
getBodyText Method Returns content text without formatting. 65
GetContent Method string Retrieves specified content type from current edit | 65
session.
getDocument Method Saves entire HTML document currently in editor. | 66
getHeadHTML Method Returns <HEAD> through </HEAD> HTML of 69
current document as a string, including the HEAD
tags.
getProperty Method Reads from ActiveX control property. 71
getPropertyBoolean Method Returns value of a Boolean property. 71
getPropertyinteger Method Returns value of a Numeric property. 71
getPropertyString Method Returns value of a String property. 71
getSelectedHTML Method string Returns currently selected content including any | 72
HTML tags.
getSelectedText Method string Returns currently selected text with no formatting. | 73
hideAboutButton Property boolean Can remove the About button from the toolbar. 124
IsDirty Property boolean Returns “true” if content has changed. 124
isEditorReady Method boolean If “true”, editor is ready to process a command. 76
IsTagApplied Method boolean Indicates if a specified XML tag can be applied at | 79
the current cursor location.
License Property The license keys of the editor. 124
Locale Property The URL of the localization directory or file. 124
MediaFile Method media file Returns reference to the Media File object. 83
object
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 14

Name APIType | Return Description Details
Type
onblur event An event that fires when the editor loses the 149
focus.
ondblclickelement event Double-clicking on a hyperlink, applet, object, 148
image, or table causes this event to fire.
onexeccommand event Raised after a toolbar button is pressed, a toolbar | 148
dropdown list item is selected, or a context menu
(right-click menu) item is selected.
onfocus() event An event that fires when the editor gains the 148
focus.
pasteHTML Method Replaces selected content with string passedto | 85
pasteHTML.
pasteText Method Replaces selected content with string passedto | 85
pasteText.
PopulateTagsWithStyles Style Sheet | boolean Applies current, active styles to content's tags. 86
Method
ReadOnly Property boolean Prevents user from modifying editor content. 124
SetContent Method string Assigns given content to the editor session. 95
setDocument Method Replaces entire document with specified 95
document.
setHeadHTML Method Sets <HEAD> through </HEAD> portion of the 94
document header.
setProperty Method Writes to ActiveX control property. 99
ShowActiveStylesDetails Style Sheet | string Returns a comma-delimited list of the active style | 101
Method sheet titles and style information
SrcPath Property string Specifies where eWebEditPro is installed. 125
StyleSheet Property string Specifies style sheet file (CSS) to apply to editor | 125
content.
TagCount Method long Indicates how many times a specified XML tag 102
exists in the content.
Title Property A document title for page. 125
Toolbars Method Toolbar Returns a reference to the Toolbar Interface 105
Control object.
Object
version property The version of the control. 142
xmlinfo Property Dynamically assigns XML and custom tag 126
configuration data that is external to normal
configuration data.
XMLProcessor Method XML Object | Retrieves interface to XML Object. 106
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 15

Image Editor Object

Description: All all methods available to manipulate WeblmageFX, such as
displaying the dialog that lets the user save the file.

Hierarchy Location:
eWebEditPro JavaScript Object
+-->instances
+-->eWebEditPro ActiveX Control
+-->ImageEditor
Child Objects: none
Syntax for retrieving object:
eWebEditPro. instances[sEditorName].editor. ImageEditor();

For more information see: “WeblmageFX” on page 510

Name API Type Return Description Details
Type

AskOpenFile Method boolean Displays a dialog that prompts the user to select | 46
an image to edit.

AskSaveAs Method string Displays a dialog that asks user to select a format | 47
and file name for current image.

AskSelectColor Method none Displays a dialog for user to choose color and line | 47
size of recently-drawn annotation.

Convertimage Method string Converts specified image into file format 52
requested by client.

CreateNew Method boolean Creates or saves a new image. 54

EditCommandComplete Event n/a Notifies client application or script that user edit 144
command has completed.

EditCommandStart Event n/a Notifies client application or script that user edit 145
command has started.

EditComplete Event n/a Notifies client application or script that editing 145
session has completed.

EditFile Method boolean Loads the given file for user editing. 55

EditFromHtml Method string Parses specified HTML tag and extracts 56

information about image and associated named
data from attributes.

EnableCreation Method boolean Enables or disables user interface that allows 57
user to create new image.

EnableFormatChange Method boolean Enables or disables user’s ability to change the 57
file format and select the number of colors for
image.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 16

Name APIType | Return Description Details
Type

EnableNameChange Method boolean Enables or disables user’s ability to change the 58
name of image file.

ErrorClear Method void Clears any current errors. 59

ErrorDescription Method string Retrieves a text description of the last error 59
encountered.

ErrorValue Method long Returns a numeric value representing the last 60
error encountered.

ExecCommand Method none Directly executes a command name with 61
parameters, without going through
eWebEditPro’s command mechanism.

Getlmagelnformation Method string Retrieves specified information about an image. 69

GetValidFormats Method string Retrieves current set of valid file formats 73
supported by feature.

ImageEditor Method Retrieves Image Edit object that exists within 74
WeblmageFX.

ImageError Event n/a Notifies client application or script that error has 146
occurred.

IsDirty Method boolean Returns a non-zero (boolean true) value if user 76
modified image.

IsPresent Method boolean Returns true if WeblmageFX is installed properly | 78
on client system.

IsVisible Method boolean This method returns true if WeblmageFX is visible | 79
to user from within ewWebEditPro.

LoadedFileName Method string Returns name of loaded image file. 83

Loadingimage Event n/a Notifies client application or script that image file | 146
has loaded.

PublishHTML Method string Formats named values into HTML tag that 87
contains attribute/value combinations.

Save Method string Saves currently edited image with currently 92
selected file parameters.

SaveAs Method string Saves the currently edited image with the 92
specified parameters.

SavedFileName Method string Returns name that file was actually saved as. 93

Savinglmage Event n/a Called before current image is saved to local 147
file system.

SetConfig Method string Specifies which configuration file to use for 94
controlling WeblmageFX.

SetlLocale Method string Specifies a Locale translation file to use. 99

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 17

specified image file.

Name APIType | Return Description Details
Type
SetValidFormats Method long Specifies a set of formats that are considered 100
valid by a client application or script.
Thumbnail Method string Creates a thumbnail of the current image or a 102

Toolbars Object

Description: Contains properties and methods that let you control menu, button,

and command functionality.

Hierarchy Location:

eWebEditPro JavaScript Object

+-->instances
+-->eWebEditPro ActiveX Control

+-->Toolbars

Child Objects: Commandltem

Syntax for retrieving object:

eWebEditPro. instances[sEditorName].editor.Toolbars();

For more information see: “The Toolbar Object Interface” on page 194

Name API Type Return Description Details
Type
CommandAdd method string Adds a command to the specified toolbar. 50
CommandDelete method none Deletes a command from a toolbar. 51
Commandltem method string Retrieves the interface directly to the command 51
item.
HideAbout method boolean Hides the about command button. 73
HideAllMenus method none Hides all toolbar menus. 74
PopupMenu method none Brings up a popup menu. 86
SeparatorBarAdd method boolean Adds a separator bar to the specified toolbar. 93
SeparatorSpaceAdd method boolean Adds a separator space to the specified toolbar. 94
ShowAbout method boolean Shows the about button 100
ShowAllMenus method none Restores the view of menus hidden with 102
HideAllMenus.
ToolbarAdd method etb Creates a toolbar and adds it to the toolbars 103
ErrorValues | available to the user.
value
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 18

Name API Type | Return Description Details
Type

ToolbarModify method etb Modifies an existing toolbar. 104
ErrorValues
value

Media File Object

Description: Contains information about the uploaded file, such as the source

location, the destination and size of the image.
Hierarchy Location:

eWebEditPro JavaScript Object
+-->instances

+-->eWebEditPro ActiveX Control

+-->Media File
Child Objects: Automatic Upload
Syntax for retrieving object:

eWebEditPro. instances[sEditorName].editor _MediaFile();

For more information see: “Managing Images” on page 392 and
“Programmatically Accessing Media File Properties” on page 425

Name API Type Return Description Details
Type
Alignment property string Determines image’s alignment on the page. 111
AllowSubDirectories property boolean Determines if user can select subdirectories. 111
AllowUpload property boolean Determines if user can upload files from local PC to | 110
server.
BaseURL property string The base URL value set in the editor. 112
BorderSize property integer The size of the image’s border in pixels. 112
DefDestinationDir property string The destination path where the image will be 112
placed.
DefSourceDir property string The initial directory that appears when the user is 113
selecting a local file.
Domain property string The domain name of the upload server. 113
FileExistsLocally method boolean Determines if file exists on local system. 62
FileSize property long The size of the image file in bytes. 113
FileTitle property string The title of the file. 113
FileType property string The type of file. 113
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 19

Name API Type | Return Description Details
Type

FWLoginName property string User's login name for the firewall. Not currently 114
used.

FWPassword property string User's password for the firewall. Not currently used. | 114

FWPort property integer The firewall port to use for any transfer. 114

FWProxyServer property string Firewall proxy server. Not currently used. 114

FWUse property boolean If true, a firewall mechanism is used. Not currently | 114
used.

FWUsePassV property boolean If true, PASV mode FTP is enabled. 114

Get EnablePathResolution property boolean Enables path resolution functionality. 115

Get IsValid property boolean Returns whether current upload connection is valid. | 115

Get property boolean If “true”, user can manually enable or disable path 115

ShowResolutionOverride resolution mechanism.

Get XferType property string Retrieves or sets the transfer type string. 115

getProperty method string Retrieves the property name given. 71

getPropertyBoolean method boolean Retrieves the property name given as a boolean. 72

getPropertylnteger method integer Retrieves the property name given as an integer. 72

getPropertyString method string Retrieves the property name given as a string. 72

HandledInternally property boolean Determines if the upload has already been handled | 115
internally.

HorizontalSpacing property integer Horizontal spacing attribute to use in HTML. 116

ImageHeight property integer The height of the image. 116

ImageWidth property integer The width of the image. 116

IsLocal property boolean Set to true if a local file will be placed into the 116
SrcFileLocationName property.

LoginName property string The login name of the user uploading the image. 116

MaxFileSizeK property integer Maximum size in kilobytes of image to be uploaded. | 117

MediaType property string Determines which valid extensions are provided in | 117
the Media File Selection dialog.

NeedConnection property boolean Determines if a connection is necessary with the 117
current upload method.

Password property string The password of the user uploading the image. 117

Port property integer The port to use for uploads. 117

ProxyServer property string The name of the proxy server to use with uploads. | 118

RemotePathFileName property string The remote path and name of the currently selected | 118
file.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 20

Name API Type | Return Description Details
Type

ResolveMethod property string The method by which the image source path is 118
resolved.

ResolvePath property string The path used to resolve an image path when 118
GIVEN is the resolution method.

RetrieveHTMLString method boolean Returns HTML string to be used for insertion into 91
HTML.

setProperty method none Sets the named property to the value given. 99

ShowHeight property integer The height attribute of the HTML image tag. 119

ShowWidth property integer The width attribute for the HTML image tag. 119

SrcFileLocationName property string The full location of the source file. 119

TransferMethod property string The name of the upload method used if the 119
ProvideMediaFile method is called.

TransferRoot property string The destination path where the image will be 120
placed.

UseHTMLString method string Information from given HTML string is placed into 105
the appropriate Media object properties.

UsePassV property boolean If true, FTP works in passive mode. 120

ValidConnection property boolean If true, system made valid connection with current | 120
connection parameters.

ValidExtensions property string File extensions of images that can be uploaded. 120

VerticalSpacing property integer The value of the vertical spacing attribute of the 120
HTML image tag.

WebPathName property string The Web accessible name of the specified file. 121

WebRoot property string The base location for accessing uploaded images 121

from a Web page.

ObjectCommand Item Object

Description: Lets you manage the user interface commands. For example, you
can disable a command, modify the button caption or tooltip text, etc.

Hierarchy Location:

eWebEditPro JavaScript Object

+-->instances

Child Objects: none

+-->eWebEditPro ActiveX Control Object

+-->toolbars

+-->Command Item

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

21

Syntax for retrieving object:

eWebEditPro. instances[sEditorName].editor._Toolbars() .Commandltem(sCommandName) ;

For more information see: “The Toolbar Object Interface” on page 194

Name API Type Return Description Details
Type
Addltem method none In an edit control, it sets the text. In a list box, it adds an | 45

item to the dropdown list.

Clear method none In a list box, it clears all entries. In an edit box, it clears | 49
the text. In a toggle, it ensures that it is un-toggled.

CmdCaption property string Retrieves the caption. 106

CmdData property long Sets the current item to the entry that contains the long | 106
data value associated with the text.

CmdFirst method boolean Sets the command object to look at the first command | 49
in the menu or toolbar.

CmdGray property boolean The command is disabled and displayed as a grayed 106
image.

Cmdindex property integer Sets the currently selected index and retrieves the 106
currently selected index into the list box.

CmdName property string Returns the command name associated with the 107
button.

CmdNext method boolean Sets the command object to look at the next command | 50

in the menu or toolbar.

CmdStyle property integer Reflects the style of the command. 107
CmdText property string Sets the current selection for a list box. 107
CmdToggledOn property boolean Only available to Toggle style buttons. If true, the button | 107

appears pressed in or selected. If false, it appears
popped out or unselected.

CmdToolTipText property string Contains the tooltip text associated with a command. 107
CmdType property etbComma | The command type assigned during the creation of the | 107
nd command.
Styles
CmadVisible property boolean Reflects the visibility of a command. If true, the user 108
can see the command.
FirstCommand method boolean Sets the current reference to the first command 63
available.
getProperty method string Reads from the ActiveX control property. 71
getPropertyBoolean method boolean Returns the value of a Boolean property. 72
getPropertylnteger method integer Returns the value of a numeric property. 72
getPropertyString method string Returns the value of a String property. 72

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 22

Name APl Type Return Description Details
Type

IsValid method boolean Returns “true” if the interface references a valid 79
command.

ListCommandName method string Returns the name of the command associated with the | 80
item at the index specified.

MaxListboxWidth property integer Sets or retrieves the width of an edit box or a list box in | 108
characters.

NextCommand method boolean Sets the current reference to the next command 83
available.

setProperty method none Writes to the ActiveX control property. 99

Automatic Upload Object

Description: Lets you programatically control the Automatic Upload feature. For

example, you can specify the server to use with the receiving page.
Hierarchy Location:
eWebEditPro JavaScript Object
+-->instances
+-->eWebEditPro ActiveX Control Object
+-->Media File
+-->Automatic Upload
Child Objects: none
Syntax for retrieving object:

eWebEditPro. instances[sEditorName].editor.MediaFile() .AutomaticUpload();

For more information see: “Automatic Upload Object” on page 499

Name APl Type Return Description Details
Type

AddFileForUpload method none Adds file to list of files to upload. 43

AddNamedData method boolean Adds named data set to individual upload files in file 46
store.

AllowUpload property boolean Enables or disables automatic upload feature. 110

ContentDescription property string Description string sent to the server when content is 110
posted.

ContentTitle property string The title of the content posted to the serve. 110

ContentType property string The type of content posted to the server. 110

GetFieldValue method string Reads value from the given data item. 66

GetFileDescription method string Returns description of file in list of files added for upload. | 67

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 23

Name APl Type Return Description Details
Type

GetFileStatus method long Retrieves upload status of file in list of files added for 68
upload.

ListFilesWithStatus method string Retrieves a list of files with a specified status. 80

LoginName property string The login name of the user uploading the image. 108

LoginRequired property boolean Enables or disables the act of logging into a remote site. | 109

Password property string The password of the user uploading the image. 109

Port property long The port used for HTTP posting or FTP transfer. 111

ReadNamedData method string Retrieves the data value of the data name from the file 88
specified.

ReadResponseHeader method string Retrieves the header of the response sent by the server. | 88

ReadUploadResponse method string Reads the full text returned from the server as a response | 89
to the upload.

RemoveFieldValue method none Removes given data item so it is not sent with the upload. | 90

RemoveFileForUpload method none Removes a specified file from the list of files for 90
uploading.

RemoveNamedData method boolean Removes the named data set from the file specified. 91

ServerName property string Specifies the server to use with the receiving page. 108

SetFieldValue method none Assigns a data item to be sent with the file. 96

SetFileDescription method none Sets description of specified file. 97

SetFileStatus method none Sets status of given file. 97

TransferMethod property string Specifies how the Automatic Upload mechanism 119
performs an upload when local files are detected.
TransferRoot property string The destination path where the image will be placed. 109
UploadConfirmMsg method none Sets user message displayed on the user intervention 105
dialog.
ValidExtensions property string The file extensions of images that can be uploaded, 109
entered as a comma-delimited string.

WebRoot property string The base location for accessing uploaded images froma | 121
Web page.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 24

eWebEditPro APl Cheat Sheet

This section first lists and briefly describes all elements in alphabetical order.
After that, it provides a detailed description for each method, property, and
event.

NOTE

You can use this information to customize your implementation of
eWebEditPro via scripting.

Methods, properties and events in the XML objects and XML Data object are
only available with eWebEditPro+XML.

Alphabetical List of Methods, Properties and Events

Method/Property/ | Details | In object Description

Event

{editor name} 139 "eWebEditPro A reference to an instance of the eWebEditPro ActiveX
Object” control.

actionOnUnload 139 "eWebEditPro Determines how content is saved when Web page is
Object” unloaded.

addEventHandler 43 "eWebEditPro Defines event handlers for eWebEditPro events, such as
Object” onready.

addEventHandler 43 "Instances Defines event handlers for eWebEditPro events, such as
Object” onready.

AddFileForUpload 43 "Automatic Adds file to list of files to upload.
Upload Object”

addInlineStyle 44 "Parameters Adds an inline <STYLE>... </STYLE> to document header.
Object”

Addltem 45 "ObjectComman | In an edit control, it sets the text. In a list box, it adds an
d Item Object” item to the dropdown list.

addLinkedStyleSheet 45 "Parameters Adds linked style sheet reference to document header.
Object”

AddNamedData 46 "Automatic Adds named data set to individual upload files in file store.
Upload Object”

Alignment 111 "Parameters Determines image’s alignment on the page.
Object”

AllowSubDirectories 111 "Parameters Determines if user can select subdirectories.
Object”

allowupload 112 "Parameters Determines if user can upload files from local PC to server.
Object”

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 25

Method/Property/ Details | In object Description
Event
AllowUpload 110 "Automatic Enables or disables automatic upload feature.
Upload Object”
alt 127 "Image Tag Determines the alt text that appears for a popup window.
Object”
AskOpenFile 46 "Image Editor Displays a dialog that prompts the user to select an image
Object” to edit.
AskSaveAs a7 "Image Editor Displays a dialog that asks user to select a format and file
Object” name for current image.
AskSelectColor a7 "Image Editor Displays a dialog for user to choose color and line size of
Object” recently-drawn annotation.
autolnstallExpected 48 "eWebEditPro Indicates if an automatic download and installation of
Object” eWebEditPro is expected.
BaseURL 128 "eWebEditPro This property sets the current URL of the editor to the
ActiveX Control | specified location.
Object”
BaseURL 112 "Parameters The base URL value set in the editor.
Object”
bodyStyle 121 "eWebEditPro Cascading style sheet (CSS) attribute values.
ActiveX Control
Object”
BodyStyle 48 "eWebEditPro Sets/gets the document's body style.
ActiveX Control
Object”
border 127 "Image Tag Determines the size of the border in a popup window.
Object”
BorderSize 112 "Parameters The size of an image’s border in pixels.
Object”
buttonTag 129 "Parameters Object consisting of
Object” « eWebEditProDefaults.buttonTagStart
« eWebEditProDefaults.buttonTagEnd
« eWebEditProMessages.popupButtonCaption
See Also: "Button Tag Object”
CharSet 122 "eWebEditPro The charset value for a page.
ActiveX Control
Object”
Clear 49 "ObjectComman | In a list box, it clears all entries. In an edit box, it clears the
d Iltem Object” text. In a toggle, it ensures that it is un-toggled.
ClearStylesFromTags 49 "eWebEditPro Removes style attribute from all tags in document.

ActiveX Control
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 26

Method/Property/ Details | In object Description

Event

clientinstall 130 "Parameters The directory in which the client installation file resides.
Object”

CmdCaption 106 "ObjectComman | Retrieves the caption.
d Item Object”

CmdData 106 "ObjectComman | Sets the current item to the entry that contains the long data
d Item Object” value associated with the text.

CmdFirst 49 "ObjectComman | Sets the command object to look at the first command in
d Item Object” the menu or toolbar.

CmdGray 106 "ObjectComman | The command is disabled and displayed as a grayed
d Item Object” image.

Cmdindex 106 "ObjectComman | Sets the currently selected index and retrieves the currently
d Item Object” selected index into the list box.

CmdName 107 "ObjectComman | Returns the command name associated with the button.
d Item Object”

CmdNext 50 "ObjectComman | Sets the command object to look at the next command in
d Item Object” the menu or toolbar.

CmdStyle 107 "ObjectComman | Reflects the style of the command.
d Item Object”

CmdText 107 "ObjectComman | Sets the current selection for a list box.
d Item Object”

CmdToggledOn 107 "ObjectComman | Only available to Toggle style buttons. If true, the button
d Item Object” appears pressed in or selected. If false, it appears popped

out or unselected.

CmdToolTipText 107 "ObjectComman | Contains the tooltiptext associated with a command.
d Item Object”

CmdType 107 "ObjectComman | The command type assigned during the creation of the
d Iltem Object” command.

CmadVisible 108 "ObjectComman | Reflects the visibility of a command. If true, the user can
d Item Object” see the command.

cols 130 "Parameters The number of columns in the TEXTAREA element if
Object” eWebEditPro is not installed or not supported.

CommandAdd 50 "Toolbars Adds a command to the specified toolbar.
Object”

CommandDelete 51 "Toolbars Deletes a command from a toolbar.
Object”

CommandItem 51 "Toolbars Retrieves the interface directly to the command item.
Object”

Config 122 "eWebEditPro The URL of the config XML file.

ActiveX Control
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 27

Method/Property/ Details | In object Description

Event

ContentDescription 110 "Automatic Description string sent to the server when content is
Upload Object” posted.

ContentTitle 110 "Automatic The title of the content posted to the serve.
Upload Object”

ContentType 110 "Automatic The type of content posted to the server.
Upload Object”

Convertimage 52 "Image Editor Converts specified image into file format requested by
Object” client.

create 53 "eWebEditPro Creates an instance of an in-line editor in the page.
Object”

createButton 53 "eWebEditPro Creates an instance of a button which, if clicked, opens a
Object” popup window with the editor in it.

CreateNew 54 "Image Editor Creates or saves a new image.
Object”

DefDestinationDir 112 "Parameters The destination path where the image will be placed.
Object”

DefineField 607 "eWebEditPro Loads more than one content field into the editor.
Object”

DefSourceDir 113 "Parameters The initial directory that appears when the user is selecting
Object” a local file.

disableAllStyleSheets 55 "eWebEditPro Enables or disables all style sheets for an editor.
ActiveX Control
Object”

Disabled 122 "eWebEditPro When set to true, the editor is disabled.
ActiveX Control
Object”

disableStyleSheet 54 "eWebEditPro Enables or disables linked or inline style sheet as identified
ActiveX Control | by its title.
Object”

Domain 113 "Parameters The domain name of the upload server.
Object”

edit 55 "eWebEditPro Opens a popup window with the editor in it.
Object”

EditCommandComplete | 144 "Image Editor Notifies client application or script that user edit command
Object” has completed.

EditCommandStart 145 "Image Editor Notifies client application or script that user edit command
Object” has started.

EditComplete 145 "Image Editor Notifies client application or script that editing session has
Object” completed.

EditFile 55 "Image Editor Loads the given file for user editing.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 28

Method/Property/ Details | In object Description

Event

EditFromHtml 56 "Image Editor Parses specified HTML tag and extracts information about
Object” image and associated named data from attributes.

editor 136 "Instances A reference to the ewWebEditPro ActiveX control.
Object”

editorGetMethod 144 "Parameters Lets you save either the body only or the entire HTML
Object” document from the editor.

editorName 143 "eWebEditProUti | Holds the name of the editor that opened the popup.
| Object”

elemName 136 "Instances The name of the field element that contains the editor
Object” content.

embedAttributes 130 "Parameters Optional attributes to the EMBED tag.
Object”

EnableCreation 57 "Image Editor Enables or disables user interface that allows user to
Object” create new image.

EnableFormatChange 57 "Image Editor Enables or disables user’s ability to change the file format
Object” and select the number of colors for image.

EnableNameChange 58 "Image Editor Enables or disables user’s ability to change the name of
Object” image file.

End 127 "Button Tag Determines the end of the HTML that appears on the
Object” popup edit button.

ErrorClear 59 "Image Editor Clears any current errors.
Object”

ErrorDescription 59 "Image Editor Retrieves a text description of the last error encountered.
Object”

ErrorValue 60 "Image Editor Returns a numeric value representing the last error
Object” encountered.

EstimateContentSize 60 "eWebEditPro Estimates the size of current content.
Object”

eWebEditProDbIClickEl | 154 "ewebeditproeve | The JavaScript event that occurs when a user double-clicks

ement nts Object” a hyperlink, applet, object, image or table within the editor,

unless a specific event handler for hyperlink, image or table
is defined.

eWebEditProDbIClickHy | 155 "ewebeditproeve | The JavaScript event that occurs when a user double-clicks

perlink nts Object” a hyperlink.

eWebEditProDblClicklm | 155 "ewebeditproeve | The JavaScript event that occurs when a user double-clicks

age nts Object” an image.

eWebEditProDbIClickTa | 155 "ewebeditproeve | The JavaScript event that occurs when a user double-clicks

ble nts Object” atable.

eWebEditProExecCom | 153 "ewebeditproeve | The JavaScript defined in this function is called after an

mand nts Object” internal command is executed, or when an external

command should be executed.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

29

Method/Property/ Details | In object Description

Event

eWebEditProMediaNotifi "ewebeditproeve

cation nts Object”

eWebEditProMediaSele | 154 "ewebeditproeve | Lets you add a media file handler.

ction nts Object”

eWebEditProReady 153 "ewebeditproeve | Indicates it is safe to send commands to or access the
nts Object” MediaFile Object.

ExecCommand 62 "eWebEditPro Causes the editor to perform the specified operation.
ActiveX Control
Object”

ExecCommand 61 "Image Editor Directly executes a command name with parameters,
Object” without going through eWebEditPro’s command

mechanism.

FileExistsLocally 62 "Parameters Determines if file exists on local system.
Object”

FileSize 113 "Parameters The size of the image file in bytes.
Object”

FileTitle 113 "Parameters The title of the file.
Object”

FileType 113 "Parameters The type of file.
Object”

FirstCommand 63 "ObjectComman | Sets the current reference to the first command available.
d Item Object”

Focus 63 "eWebEditPro Programmatically sets focus to eWebEditPro editor using
ActiveX Control | JavaScript.
Object”

formName 136 "Instances The name or index of the form that contains this instance of
Object” the editor.

FWLoginName 114 "Parameters User's login name for the firewall. Not currently used.
Object”

FWPassword 114 "Parameters User's password for the firewall. Not currently used.
Object”

FWPort 114 "Parameters The firewall port to use for any transfer.
Object”

FWProxyServer 114 "Parameters Firewall proxy server. Not currently used.
Object”

FWUse 114 "Parameters If true, a firewall mechanism is used. Not currently used.
Object”

FWUsePassV 114 "Parameters If true, PASV mode FTP is enabled.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

30

Method/Property/ Details | In object Description

Event

GetActiveStyleSheetTitl | 63 "eWebEditPro Returns a comma-delimited list of the titles of active styles.

es ActiveX Control
Object”

getBodyHTML 64 "eWebEditPro Saves content within the BODY tags as HTML.
ActiveX Control
Object”

getBodyText 65 "eWebEditPro Returns content text without formatting.
ActiveX Control
Object”

GetContent 65 "eWebEditPro Retrieves specified content type from current edit session.
ActiveX Control
Object”

getDocument 66 "eWebEditPro Saves entire HTML document currently in editor.
ActiveX Control
Object”

Get 115 "Parameters Enables path resolution functionality.

EnablePathResolution Object”

GetFieldValue 66 "Automatic Reads value from the given data item.
Upload Object”

GetFileDescription 67 "Automatic Returns description of file in list of files added for upload.
Upload Object”

GetFileStatus 68 "Automatic Retrieves upload status of file in list of files added for
Upload Object” upload.

getHeadHTML 69 "eWebEditPro Returns <HEAD> through </HEAD> HTML of current
ActiveX Control | document as a string, including the HEAD tags.
Object”

Getlmagelnformation 69 "Image Editor Retrieves specified information about an image.
Object”

Get IsValid 115 "Parameters Returns whether current upload connection is valid.
Object”

getOpenerinstance 70 "eWebEditProUti | Returns a reference to Instance JavaScript object
| Object” responsible for opening the popup.

getProperty 71 "ObjectComman | Retrieves the property name given.
d Item Object”

getProperty 71 "eWebEditPro Reads from ActiveX control property.
ActiveX Control
Object”

getProperty 71 "Parameters Retrieves the property name given.
Object”

getPropertyBoolean 72 "ObjectComman | Retrieves the property name given as a string.

d Item Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

31

Method/Property/ Details | In object Description

Event

getPropertyBoolean 71 "eWebEditPro Returns value of a Boolean property.
ActiveX Control
Object”

getPropertyBoolean 72 "Parameters Retrieves the property name given as a string.
Object”

getPropertylnteger 72 "ObjectComman | Retrieves the property name given as an integer.
d Item Object”

getPropertyInteger 71 "eWebEditPro Returns value of a Numeric property.
ActiveX Control
Object”

getPropertyinteger 72 "Parameters Retrieves the property name given as an integer.
Object”

getPropertyString 72 "ObjectComman | Retrieves the property name given as a boolean.
d Item Object”

getPropertyString 71 "eWebEditPro Returns value of a String property.
ActiveX Control
Object”

getPropertyString 72 "Parameters Retrieves the property name given as a boolean.
Object”

getSelectedHTML 72 "eWebEditPro Returns currently selected content including any HTML
ActiveX Control | tags.
Object”

getSelectedText 73 "eWebEditPro Returns currently selected text with no formatting.
ActiveX Control
Object”

Get 115 "Parameters If true, user can manually enable or disable path resolution

ShowResolutionOverrid Object” mechanism.

e

GetValidFormats 73 "Image Editor Retrieves current set of valid file formats supported by
Object” feature.

Get WDDX 124 "eWebEditPro Sets or retrieves assigned WDDX data.
ActiveX Control
Object”

Get XferType 115 "Parameters Retrieves or sets the transfer type string.
Object”

HandledInternally 115 "Parameters Determines if the upload has already been handled
Object” internally.

height 127 "Image Tag Determines the height of a popup window.
Object”

height 137 "Instances The height of the editor assigned when created.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 32

Method/Property/ Details | In object Description

Event

HideAbout 73 "Toolbars Hides the about command button.
Object”

hideAboutButton 124 "eWebEditPro Can remove the About button from the toolbar.
ActiveX Control
Object”

HideAllMenus 74 "Toolbars Hides all toolbar menus.
Object”

HorizontalSpacing 116 "Parameters Horizontal spacing attribute to use in HTML.
Object”

html 137 "Instances A string containing the HTML.
Object”

HTMLEncode 74 "eWebEditProUti | HTML encodes the given string.
| Object”

id 137 "Instances The name of the eWebEditPro editor element in the
Object” object (Internet Explorer) or embed (Netscape) tag.

ImageEditor 74 "Image Editor Retrieves Image Edit object that exists within
Object” WeblmageFX.

ImageError 146 "Image Editor Notifies client application or script that error has occurred.
Object”

ImageHeight 116 "Parameters The height of the image.
Object”

ImageWidth 116 "Parameters The width of the image.
Object”

insertMediaFile 74 "Instances Inserts an image file (or other media file) to the editor.
Object”

installPopup 140 "eWebEditPro If true, a window with the intro.htm page pops up.
Object”

instances collection 140 "eWebEditPro An array of in-line editor objects of type eWebEditProEditor
Object” or eWebEditProAlt.

isAutolnstallSupported 140 "eWebEditPro If true, eWebEditPro can be automatically installed.
Object”

isChanged 75 "eWebEditPro Determines if editor content has changed.
Object”

isChanged 75 "Instances Returns true if content in any editor on the page was
Object” modified.

IsDirty 124 "eWebEditPro Returns true if content has changed.
ActiveX Control
Object”

IsDirty 76 "Image Editor Returns a non-zero (boolean true) value if user modified
Object” image.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

33

Method/Property/ Details | In object Description

Event

isEditor 76 "eWebEditPro Indicates if an instance of an editor exists by the given
Object” name, and if the instance has a valid 'editor' property.

isEditor 76 "Instances Returns true if the .editor object is available.
Object”

isEditorReady 76 "eWebEditPro If “true”, editor is ready to process a command.
ActiveX Control
Object”

isinstalled 140 "eWebEditPro If “true”, eWebEditPro is installed.
Object”

IsLocal 116 "Parameters Set to true if a local file will be placed into the
Object” SrcFileLocationName property.

isOpenerAvailable 78 "eWebEditProUti | Determines if page that opened the popup is still open.
| Object”

IsPresent 78 "Image Editor Returns true if WeblmageFX is installed properly on client
Object” system.

isSupported 141 "eWebEditPro If true, eWebEditPro is supported in this environment. It
Object” may not be installed yet.

IsTagApplied 79 "eWebEditPro Indicates if a specified XML tag can be applied at the
ActiveX Control | current cursor location.
Object”

IsValid 79 "ObjectComman | Returns “true” if the interface references a valid command.
d Item Object”

IsVisible 79 "Image Editor This method returns true if WeblmageFX is visible to user
Object” from within eWebEditPro.

languageCode 143 "eWebEditProUti | The language code of the browser.
| Object”

License 124 "eWebEditPro The license keys of the editor.
ActiveX Control
Object”

ListCommandName 80 "ObjectComman | Returns the name of the command associated with the item
d Item Object” at the index specified.

ListFilesWithStatus 80 "Automatic Retrieves a list of files with a specified status.
Upload Object”

load 82 "eWebEditPro Loads content into all in-line editors on page from standard
Object” HTML elements with the same name.

load 82 "Instances Loads content into editor.
Object”

LoadedFileName 83 "Image Editor Returns name of loaded image file.
Object”

Loadinglmage 146 "Image Editor Notifies client application or script that image file has
Object” loaded.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 34

Method/Property/ Details | In object Description

Event

locale 83 "Parameters Specifies the locale file to use.
Object”

Locale 124 "eWebEditPro The URL of the localization directory or file.
ActiveX Control
Object”

LoginName 108 "Automatic The login name of the user uploading the image.
Upload Object”

LoginName 116 "Parameters The login name of the user uploading the image.
Object”

LoginRequired 109 "Automatic Enables or disables the act of logging into a remote site.
Upload Object”

maxContentSize 137 "Instances The largest number of characters that can be saved in the
Object” editor window.

maxContentSize 130 "Parameters The largest number of characters that can be saved in
Object” editor.

MaxFileSizeK 117 "Parameters Maximum size in kilobytes of image to be uploaded.
Object”

MaxListboxWidth 108 "ObjectComman | Sets or retrieves the width of an edit box or a list box in
d Item Object” characters.

MediaFile 83 "eWebEditPro Returns reference to the Media File object.
ActiveX Control
Object”

MediaType 117 "Media File Determines which valid extensions are provided in the
Object” Media File Selection dialog.

name 138 "Instances The name assigned to this instance of the editor when it
Object” was created.

NeedConnection 117 "Parameters Determines if a connection is necessary with the current
Object” upload method.

NextCommand 83 "ObjectComman | Sets the current reference to the next command available.
d Item Object”

objectAttributes 131 "Parameters Optional attributes to the OBJECT tag.
Object”

onbeforeedit 150 "Event Object” Occurs when the user clicks the button created by the

createButton method.

onbeforeedit 150 "eWebEditPro Occurs when the onbeforeedit method is invoked.
Object”

onbeforeload 150 "Event Object” Occurs when the load method is invoked.

onbeforeload 150 "eWebEditPro Occurs when the load method is invoked.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 35

Method/Property/ Details | In object Description

Event

onbeforeload 150 "Instances Occurs when the load method is invoked.
Object”

onbeforesave 150 "Event Object” Occurs when the save method is invoked.

onbeforesave 150 "eWebEditPro Occurs when the save method is invoked.
Object”

onbeforesave 150 "Instances Occurs when the save method is invoked.
Object”

onblur 149 "eWebEditPro An event that fires when the editor loses the focus.
ActiveX Control
Object”

onblur 149 "Parameters An event that fires when the editor loses the focus.
Object”

oncreate 149 "Event Object” Occurs when the create method is invoked.

oncreate 149 "eWebEditPro Occurs when the create method is invoked.
Object”

oncreatebutton 149 "Event Object” Occurs when the createButton method is invoked.

oncreatebutton 149 "eWebEditPro Occurs when the createButton method is invoked.
Object”

ondbiclickelement 148 "eWebEditPro Double-clicking on a hyperlink, applet, object, image, or
ActiveX Control | table causes this event to fire.
Object”

ondbiclickelement 148 "Parameters The JavaScript event that occurs when a user double-clicks
Object” any selectable element object.

onedit 150 "Event Object” Occurs after the popup window closes.

onedit 150 "eWebEditPro Occurs after the popup window closes.
Object”

onerror 152 "Event Object” Occurs when an error occurs because the save method

failed.

onerror 152 "eWebEditPro Occurs when an error occurs because the save method
Object” failed.

onerror 152 "Instances Occurs when an error occurs because the save method
Object” failed.

See Also: "The onerror Event”

onexeccommand 148 "eWebEditPro Raised after a toolbar button is pressed, a toolbar
ActiveX Control | dropdown list item is selected, or a context menu (right-
Object” click menu) item is selected.

onexeccommand 148 "Parameters The default JavaScript onexeccommand handler.
Object”

onfocus 148 "Parameters An event that fires when the editor gains the focus.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 36

ActiveX Control
Object”

Method/Property/ Details | In object Description

Event

onfocus() 148 "eWebEditPro An event that fires when the editor gains the focus.
ActiveX Control
Object”

onload 151 "Event Object” Occurs when the load method is complete.

onload 151 "eWebEditPro Occurs when the load method is complete.
Object”

onload 151 "Instances Occurs when the load method is complete.
Object”

onready 152 "Event Object” Occurs when ut is safe to send commands or access the

Media File Object.

onready 152 "eWebEditPro Occurs when it is safe to send commands or access the
Object” Media File Object.

onsave 151 "Event Object” Occurs when the save method is complete.

onsave 151 "eWebEditPro Occurs when the save method is complete.
Object”

onsave 151 "Instances Occurs when the save method is complete.
Object”

ontoolbarreset 151 "Event Object” Occurs when the toolbar is initialized or reset.

ontoolbarreset 151 "eWebEditPro Occurs when the editor's toolbar is initialized or reset.
Object”

openDialog 84 "eWebEditPro Opens the popup Web page specified by fileName.
Object”

parametersobject 141 "eWebEditPro An object of type eWebEditProParameters containing the
Object” default set of parameters used when creating an instance

of the editor or button.

Password 109 "Automatic The password of the user uploading the image.
Upload Object”

Password 117 "Parameters The password of the user uploading the image.
Object”

pasteHTML 85 "eWebEditPro Replaces selected content with string passed to
ActiveX Control | pasteHTML.
Object”

pasteText 85 "eWebEditPro Replaces selected content with string passed to pasteText.
ActiveX Control
Object”

path 131 "Parameters The path to the eWebEditPro+XML files relative to
Object” the hostname.

PopulateTagsWithStyles | 86 "eWebEditPro Applies current, active styles to content's tags.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

37

Method/Property/ Details | In object Description

Event

popup 133 "Parameters Lets you pass four parameters to the popup Web page.
Object”

PopupMenu 86 "Toolbars Brings up a popup menu.
Object”

Port 111 "Automatic The port used for HTTP posting or FTP transfer.
Upload Object”

Port 117 "Parameters The port to use for uploads.
Object”

preferredType 131 "Parameters Specifies the type of editor to create.
Object”

ProxyServer 118 "Parameters The name of the proxy server to use with uploads.
Object”

PublishHTML 87 "Image Editor Formats named values into HTML tag that contains
Object” attribute/value combinations.

query 135 "InstallPopup An optional parameter that specifies query string values to
Object” pass to the page specified by URL parameter.

query 135 "Popup Object” | A query to pass parameters to the popup window.

queryArgs 143 "eWebEditProUti | The array of URL query string parameters passed to the
| Object” page.

ReadNamedData 88 "Automatic Retrieves the data value of the data name from the file
Upload Object” | specified.

readOnly 138 "Instances Prevents user from modifying editor content.
Object”

readOnly 132 "Parameters Prevents the user from modifying the editor content.
Object”

ReadOnly 124 "eWebEditPro Prevents user from modifying editor content.
ActiveX Control
Object”

ReadResponseHeader | 88 "Automatic Retrieves the header of the response sent by the server.
Upload Object”

ReadUploadResponse | 89 "Automatic Reads the full text returned from the server as a response
Upload Object” | to the upload.

receivedEvent 138 "Instances “True” if an event has been received from ActiveX control.
Object”

refreshStatus 89 "eWebEditPro Updates the value of several properties such as status, is
Object” IE, and isNetscape,

relocate 89 "Parameters Relocates the 'on' event handlers to point to the frame
Object” where the functions are defined.

RemotePathFileName 118 "Parameters The remote path and name of the currently selected file.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 38

Method/Property/ Details | In object Description

Event

RemoveFieldValue 90 "Automatic Removes given data item so it is not sent with the upload.
Upload Object”

RemoveFileForUpload 90 "Automatic Removes a specified file from the list of files for uploading.
Upload Object”

RemoveNamedData 91 "Automatic Removes the named data set from the file specified.
Upload Object”

reset 91 "Parameters Reinitializes all values to the default defined in
Object” eWebEditProDefaults (ewebeditprodefaults.js).

ResolveMethod 118 "Parameters The method by which the image source path is resolved.
Object”

resolvePath 91 "eWebEditPro Prepends the URL with the eWebEditPro path.
Object”

ResolvePath 118 "Parameters The path used to resolve an image path when GIVEN is the
Object” resolution method.

RetrieveHTMLString 91 "Parameters Returns HTML string to be used for insertion into HTML.
Object”

rows 132 "Parameters The number of rows in the TEXTAREA element if
Object” eWebEditPro is not installed or not supported.

save 92 "eWebEditPro Saves content into all in-line editors on page from standard
Object” HTML elements with the same name.

save 92 "Instances Saves content.
Object”

Save 92 "Image Editor Saves currently edited image with currently selected file
Object” parameters.

SaveAs 92 "Image Editor Saves the currently edited image with the specified
Object” parameters.

SavedFileName 93 "Image Editor Returns name that file was actually saved as.
Object”

Savinglmage 147 "Image Editor Called before current image is saved to local
Object” file system.

SeparatorBarAdd 93 "Toolbars Adds a separator bar to the specified toolbar.
Object”

SeparatorSpaceAdd 94 "Toolbars Adds a separator space to the specified toolbar.
Object”

ServerName 108 "Automatic Specifies the server to use with the receiving page.
Upload Object”

SetConfig 94 "Image Editor Specifies which configuration file to use for controlling
Object” WeblmageFX.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 39

Method/Property/ Details | In object Description
Event
SetContent 95 "eWebEditPro Assigns given content to the editor session.
ActiveX Control
Object”
setDocument 95 "eWebEditPro Replaces entire document with specified document.
ActiveX Control
Object”
SetFieldValue 96 "Automatic Assigns a data item to be sent with the file.
Upload Object”
SetFileDescription 97 "Automatic Sets description of specified file.
Upload Object”
SetFileStatus 97 "Automatic Sets status of given file.
Upload Object”
setHeadHTML 94 "eWebEditPro Sets <HEAD> through </HEAD> portion of the document
ActiveX Control | header.
Object”
SetLocale 99 "Image Editor Specifies a Locale translation file to use.
Object”
setProperty 99 "ObjectComman | Sets the named property to the value given.
d Item Object”
setProperty 99 "eWebEditPro Writes to ActiveX control property.
ActiveX Control
Object”
setProperty 99 "Parameters Sets the named property to the value given.
Object”
SetValidFormats 100 "Image Editor Specifies a set of formats that are considered valid by a
Object” client application or script.
ShowAbout 100 "Toolbars Shows the about button
Object”
ShowActiveStylesDetail | 101 "eWebEditPro Returns a comma-delimited list of the active style sheet
s ActiveX Control | titles and style information
Object”
ShowAllMenus 102 "Toolbars Restores the view of menus hidden with HideAllIMenus.
Object”
ShowHeight 119 "Parameters The height attribute of the HTML image tag.
Object”
ShowWidth 119 "Parameters The width attribute for the HTML image tag.
Object”
src 127 "Image Tag Determines the source of the image that appears on the
Object” button used to open the popup window.
SrcFileLocationName 119 "Parameters The full location of the source file.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

40

Method/Property/ Details | In object Description

Event

srcName 129 "Event Object” The name of the instance of the editor that is the source of

the current event.

SrcPath 125 "eWebEditPro Specifies where eWebEditPro is installed.
ActiveX Control
Object”

Start 127 "Button Tag Determines the beginning of the HTML that appears on the
Object” popup edit button.

status 141 "eWebEditPro Reflects the current state of eWebEditPro.
Object”

status 138 "Instances The status of this editor.
Object”

StyleSheet 125 "eWebEditPro Specifies style sheet file (CSS) to apply to editor content.
ActiveX Control
Object”

tagAttributes 128 "Button Tag Used to assign custom attributes to the popup edit button.
Object”

TagCount 102 "eWebEditPro Indicates how many times a specified XML tag exists in the
ActiveX Control | content.
Object”

textareaAttributes 132 "Parameters Optional attributes to the TEXTAREA tag.
Object”

Thumbnail 102 "Image Editor Creates a thumbnail of the current image or a specified
Object” image file.

Title 125 "eWebEditPro A document title for page.
ActiveX Control
Object”

ToolbarAdd 103 "Toolbars Creates a toolbar and adds it to the toolbars available to the
Object” user.

ToolbarModify 104 "Toolbars Modifies an existing toolbar.
Object”

Toolbars 105 "eWebEditPro Returns a reference to the Toolbar Interface object.
ActiveX Control
Object”

TransferMethod 119 "Automatic Specifies how the Automatic Upload mechanism performs
Upload Object” | an upload when local files are detected.

TransferMethod 119 "Parameters The name of the upload method used if the
Object” ProvideMediaFile method is called.

TransferRoot 109 "Automatic The destination path where the image will be placed.
Upload Object”

TransferRoot 120 "Parameters The destination path where the image will be placed.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 41

Method/Property/ Details | In object Description

Event

type 128 "Button Tag Determines the form of the popup edit button.
Object”

type 129 "Event Object” The name of the current event without the “on” prefix.

type 138 "Instances Indicates which type of editor was created on page.
Object”

upgradeNeeded 142 "eWebEditPro If true, an older version eWebEditPro is installed and
ActiveX Control | needs to be upgraded.
Object”

UploadConfirmMsg 105 "Automatic Sets user message displayed on the user intervention
Upload Object” | dialog.

url 134 "InstallPopup Specifies URL of Web page to display in popup window
Object” when an automatic installation is expected.

url 135 "Popup Object” | The URL to the Web page that contains the editor that

appears in the popup window.

UseHTMLString 105 "Parameters Information from given HTML string is placed into the
Object” appropriate Media object properties.

UsePassV 120 "Parameters If true, FTP works in passive mode.
Object”

ValidConnection 120 "Parameters If true, system made valid connection with current
Object” connection parameters.

ValidExtensions 109 "Automatic The file extensions of images that can be uploaded,
Upload Object” | entered as a comma-delimited string.

ValidExtensions 120 "Parameters File extensions of images that can be uploaded.
Object”

value 128 "Button Tag Determines the value of the popup edit button.
Object”

Version 142 "eWebEditPro The version of the control.
Object”

versioninstalled 125 "eWebEditPro Retrieves the version of the control.
ActiveX Control
Object”

VerticalSpacing 120 "Parameters The value of the vertical spacing attribute of the HTML
Object” image tag.

WebPathName 121 "Parameters The Web accessible name of the specified file.
Object”

WebRoot 109 "Automatic The base location for accessing uploaded images from a
Upload Object” | Web page.

width 127 "Image Tag Determines the width of a popup window.
Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 42

Method/Property/ Details | In object Description

Event

width 139 "Instances The width of editor assigned when created.
Object”

windowFeatures 134 "InstallPopup Specifies popup window features as defined for standard
Object” JavaScript window.open() method.

windowFeatures 135 "Popup Object” | The parameters passed to the standard JavaScript

window.open() method.

windowName 134 "InstallPopup Specifies the name of the popup window.
Object”
windowName 136 "Popup Object” | The name assigned to the popup window created by the

standard JavaScript function window.open().

xmlinfo 126 "eWebEditPro Dynamically assigns XML and custom tag configuration
ActiveX Control | data that is external to normal configuration data.
Object”

XMLProcessor 106 "eWebEditPro Retrieves interface to XML Object (only available with
ActiveX Control | eWebEditPro+XML).
Object”

Master List of Methods

Method: addEventHandler

Description: Defines event handlers for eWebEditPro events, such as onready.

Instead of setting eWebEditPro.onready = your_onready_handler, which
replaces any handler that may have been assigned, use the following:

eWebEditPro.addEventHandler(*'onready", your_onready handler);

This method adds an event handler to a list of handlers that are called when the
onready event fires. The generic syntax is:

object.addEventHandler(event_name, event_handler)

Parameters: the name of the event, the event handler
Object: "eWebEditPro Object” and "Instances Object”

Method: AddFileForUpload

Description: Adds a file to the list of files to upload. This file does not need to
exist and does not need to be in the content. When a file is added, the status is
setto 1.

See Also: "Method: ListFilesWithStatus”
Object: "Automatic Upload Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 43

Parameters

Parameter Type Description
LocalFileName String The name and path of the local file to upload.
Description String The description of the file.

Example

objAuto.AddFileForUpload(strLocalFile, strDescription)
objAuto.AddFileForUpload(*“C:\My Pictures\images\me.gif, “A picture of me last weekend.’”)

Return: None

Method: addInlineStyle

Description: Adds an inline <STYLE>. .. </STYLE> to the document header.
Object: "eWebEditPro ActiveX Control Object”

Syntax

strReturnValue = eWebEditPro.Editorl.addInlineStyle (strSelector, strStyle)

Parameters

strReturnValue - If successful, strReturnValue is equal to strStyle. If
unsuccessful, strReturnValue is an error message.

strSelector - The tag to which the strStyle is applied. Note that the strSelector
should not represent more than one tag. To apply the same style to multiple tags,

add a style for each tag.

strStyle - The CSS syntax style to apply to the strSelector tags in the content.

Remarks

The new style sheet overrides rules for existing tags. For example, if a style sheet
affects P, LI and DIV, and there is a call to addInlineStyle that “adds” a style for the
P tag, the new P style overrides the existing P style, but the LI and DIV styles

remain in effect.

The strStyle syntax starts and ends with the style information. The function
supplies the curly brackets that surround the style information. For example:

strResult = eWebEditPro.Editorl.addInlineStyle("'P", "font-family:Arial'™)

Example

This adds style H4, identified by the style title “UserH4,” to the document header.

strNewStyle = eWebEditPro.Editorl.addInlineStyle("'H4", "font-
size:22pt;margin:15;color:blue;font-family:""Century Gothic'""", *"UserH4™)

As a result, the header HTML now has this extra content.
<STYLE title=UserH4>H4 {COLOR: blue; FONT-FAMILY: "Century Gothic'"; FONT-SIZE: 22pt; MARGIN:

15px

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 44

Method: Addltem

Description: In an edit control, this method sets the text. In a list box, it adds an
item to the dropdown list. Otherwise, it does nothing.

Object: "ObjectCommand Item Object”

Parameters

Parameter Type Description

ItemText String The text of the selection.

ltemData Long Data associated with the command. If
this is omitted or O (zero), the data
returned with the selection is the 0-based
index into the list.

StrCmdName String Command to associate with the list
selection. If this is a value, the specified
command name is sent to the client in
place of the command that contains the
list.

Return: Nothing

Method: addLinkedStyleSheet

Description: Adds a linked style sheet reference to the document header.
Object: "eWebEditPro ActiveX Control Object”

Syntax
strReturnValue = eWebEditPro.Editorl.addLinkedStyleSheet(strURL)

Parameters
Parameter Description
strReturnValue If successful, strReturnValue is equal to strURL. If
unsuccessful, strReturnValue is blank.
strURL The URL of the style sheet to link to.
Remarks

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

45

The new style sheet overrides rules for existing tags. For example, if a style sheet
affects P, LI and DIV, and there is a call to addLinkedStyle that “adds” a style for
the P tag, the new P style overrides the existing P style, but the LI and DIV styles
remain in effect.

Example
strMyStyleReturn = eWebEditPro.Editorl.addLinkedStyleSheet(*"http://www.ourcompany.com/styles/
mystyles.css™)

As a result, the header HTML now has this extra content.

<LINK href="http://www.ourcompany.com/styles/mystyles.css" rel=stylesheet title= http://
www . ourcompany .com/styles/mystyles.css>

Method: AddNamedData

Description: Adds the named data set to individual upload files in the file store.
Object: "Automatic Upload Object”

Parameters
Parameter Type Description
filename string The filename in the file store to which the
named data set is added.
data name string The name/id of the named data set.
data value string the value/data of the named data set.
Example

objAuto.AddNamedData(sFileName, sDName, sDValue);
or
objAuto.AddNamedData('c:\abc.jpg", "id", ""123");

Return: boolean
See Also: "Working with Schemas” on page 666
See Also: "Working with Schemas” on page 666

Method: AskOpenFile

Description: Displays a dialog that prompts the user to select an image to edit.
Object: "Image Editor Object”

Parameters

None

Remarks

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 46

This method lets the client application or script externally bring up the Open File
dialog.

Return: Boolean - The status of bringing up the dialog.

A True value means the dialog was successful. Otherwise, there was an error. A
cancel does not count as an error.

Method: AskSaveAs

Description: Displays a dialog that asks the user to select a format and file name
for the current image.

Object: "Image Editor Object”
Parameters: None
Remarks

This method offers the client application or script the ability to display the “Save
As” dialog to the user.

Return: String - the full file name that the user saved as the image. An empty
string denotes an error or a cancel.

Method: AskSelectColor

Description: Displays a dialog in which the user can choose a color and line size
of a recently-drawn annotation.

Object: "Image Editor Object”

Attributes

Line Attibutes Color Attributes |

Frimary Color:

HEEEC@m
(0 O O]]

ak I Cancel

Parameters

None

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 47

Method: autolnstallExpected

Description: Returns a boolean that indicates whether an automatic download
and installation of eWebEditPro is expected or not. This value can be used to
display a message informing the user what to expect while eWebEditPro is
installed.

See Also: “Client Installation Pages” on page 233

Parameters
Parameter Description
true Automatic installation is supported and
eWebEditPro is either not installed or requires
upgrading.
false Either automatic installation is not supported or the
correct version of ewebEditPro is installed.

Object: "eWebEditPro Object”
See Also: "Working with Schemas” on page 666

Method: BodyStyle

Description: Sets/gets the document's body style.

BodyStyle adds an inline style to the document header. It does not add attributes
to the Body tag.

Object: "eWebEditPro ActiveX Control Object”
Syntax
eWebEditPro.Editorl.bodyStyle = strCssText

Parameters Set

New_BodyStyle - The CSS style (without curly braces) for the new body style.
Parameters Get

(return value) - The CSS of the current body style.

Example

The following creates an inline body style that sets the document font to red Arial.
eWebEditPro.Editorl.bodyStyle = "color:red;font-family:Arial"

strBodyStyle now looks like this.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 48

BODY {
COLOR: red; FONT-FAMILY: Arial

}

Method: Clear

Description: In a list box, this method clears all entries. In an edit box, it clears
the text. In a toggle, it ensures that it is un-toggled.

Object: "ObjectCommand Item Object”
Parameters: none
Return: Nothing

Method: ClearStylesFromTags

Description: Removes the style attribute from all tags in the document.
Object: "eWebEditPro ActiveX Control Object”

Syntax

eWebEditPro.Editorl.clearStylesFromTags

Parameters

none

Example

Given the style sheet added inline and the call to PopulateTagsWithStyles:

Dim bResult As Boolean
strResult = eWebEditPro.Editorl.addLinkedStyleSheet(App.Path & '"\testpage.css'™)
bResult = eWebEditProl.PopulateTagsWithStyles

The resulting HTML looks like this.

<H1 style=""BOTTOM: Opx; FILTER: ; FONT-FAMILY: “Arial®; FONT-SIZE: 11pt; MARGIN: 0in'">This
text is styled by testpage3.css</H1>
<H2 style="BOTTOM: Opx; FILTER: ; FONT-FAMILY: “Arial®; FONT-SIZE: 10pt; MARGIN: Oin">This
text is styled by testpage3.css</H2>

Calling ClearStylesFromTags removes the styles and produces:

<H1>This text is styled by testpage3.css</H1>
<H2>This text is styled by testpage3.css</H2>

Method: CmdFirst

Description: Sets the command object to look at the first command in the menu
or toolbar. All methods in the CCommandItem interface apply to that command.
You must use the object’s other properties and methods to obtain information on
the command.

This method works with CmdNext.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 49

Object: "ObjectCommand Item Object”

Method: CmdNext

Description: Sets the command object to look at the next command in the menu
or toolbar. All methods in the CCommandItem interface will apply to that
command. You must use the object’s other properties and methods to obtain
information on the command.

A return value of “false” means there is no next command. If “false”, the
command reference does not change and remains on the previous command.

This method works with CmdFirst.
Here is an example of how to use these methods.

function ListAllMenultems(sEditorName)

{
var objMenus = eWebEditPro.instances[sEditorName].editor.Toolbars();
var objCmdltem = objMenus.Commandltem(*""); // no command name for no specific command
if(objCmdltem.CmdFirst() == true)
{
do
{
ShowText (objCmdltem.getPropertyString(‘‘CmdName'™) + " - " +
objCmdltem.getPropertyString(**CmdCaption™));
} while(objCmdltem.CmdNext() == true);
b
3

Object: "ObjectCommand Item Object”

Method: CommandAdd

Description: Adds a command to the specified toolbar.
Object: "Toolbars Object”

Parameters

Parameter Type Description

CommandName String The name of the command to add. When selected,
this is the string value sent up as the command.
See Also: "Commands”

CommandCaption String The caption to use next to the command.

ToolTip String Tool tip text that pops up when the cursor hovers
over a command.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 50

ImageFile

String

The file to use as the icon image. This can also be
one of the internal image definitions.

Options

Long

Bit field of etbToolbarOptions bits describing
specific options for the toolbar.

See Also: "ethToolbarOptions”.

Style

Long

The style from the etbCommandStyles set of
values.

See Also: "etbCommandStyles”.

ToolbarName

String

The name of the toolbar to attach this command
to. If left blank, it is not assigned to a toolbar but is
available for customization.

Method: CommandDelete

Return:

This command returns a reference to the command item that was created. Be
sure to check that the command is not nothing (that is, null) before using it.

Description: Deletes a command from a toolbar. If a toolbar name is not

specified, it is deleted from all locations.
Object: "Toolbars Object”

Method: CommandItem

Parameters

Parameter Type Description

CommandName String The command to remove.

ToolbarName String The toolbar from which to remove the command. If
this is blank, or not included, the command is
removed from all toolbars.

Return: There is no return value from this routine.

Description: Retrieves the interface directly to the command item.

For a list of methods and properties available to the Commanditem object, see

“ObjectCommand Item Object” on page 21.
Object: "Toolbars Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

51

Parameters:

Parameter

Type

Description

CommandName String

The command to retrieve.

Return: This returns a reference directly to the command item.

Method: Convertimage

Description: Converts a specified image into a file format requested by the client.
The imgfmt element of the configuration data determines which graphic file

formats are available in your system.

See Also: "imgfmt” on page 517

This method differs from the SaveAs method in that it does not depend on the
current image. Instead, it lets the client application or script quickly change any

file's format.

Object: "Image Editor Object”

Parameters

Parameter Type Description

SrclmagePath String The path to the image to convert. If this is
empty, the current image is converted
and saved.

DestimagePath String The location and name to which to save
the image. If the file extension specified
in this parameter does not match the
format parameter, the extension is
modified to match the format.

Format String The format in which to save the image.
See Also: "Specifying Image Format” on
page 523

ColorDepth Long The depth of the color conversion.

See Also: "Specifying Color Depth” on
page 523
Remarks

If an image is identified, it is loaded and saved to the given destination in the given

format.

See Also: "Method: SaveAs” on page 92

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

52

Return: String - The path to the saved file, with any extension modifications.

If not an empty string, the conversion was a success. If empty, the conversion
failed.

See Also: "Method: ErrorDescription” on page 59

Method: create

Description: Creates an instance of an in-line editor in the page. Returns an
instance object, which is also added to the instances array.

If successful, the editor’'s name is added to the eWebEditPro object to permit
easy access to the ActiveX control.

Parameters:

name - Name of the editor. Must match the name of a standard HTML element
(typically an input type= hidden) unless the content is to be manually loaded and
saved. If the editor is placed on the popup editor page (e.g.,
ewebeditpropopup.htm), the name is arbitrary.

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576
width - The width of the editor in pixels or a percent. For example, 700 or “100%".
height - The height of the editor in pixels.

If the editor cannot be displayed because eWebEditPro is not supported or not
installed, a textarea element appears in its place as close in size as possible.
Textarea size is specified in rows and columns instead of pixel width and height.
You can specify the rows and columns in the parameters object.

parameters (optional) - Optional parameters object for eWebEditPro. If not
specified, the parameters in the eWebEditPro object are used. Parameters
supplied to the popup editor take precedence over these.

Object: "eWebEditPro Object”

Method: createButton

Description: Creates an instance of a button which, if clicked, opens a popup
window with the editor in it.

This method must be called even when a custom button is used instead of the
standard HTML button. The creation of a standard HTML button may be
suppressed by clearing the parameters.buttonTag, in which case, the custom
button must call the edit method.

Parameters:

buttonName - The name of the HTML button element to create. The caption that
appears on the button is defined as popupButtonCaption in
ewebeditpromessages.js. (See “The ewebeditpromessages File” on page 228.)

elementName - The name of the HTML element that stores the content. The
element name may contain the form name to differentiate elements of the same
name in different forms, for example: “frmMain.Content”.

This name is passed to the edit method when the button is clicked.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 53

parameters (optional) - Optional parameters object for eWebEditPro. If not
specified, the parameters in the eWebEditPro object are used.

Object: "eWebEditPro Object”

Method: CreateNew

Description: Creates or saves a hew image.
Object: "Image Editor Object”

Parameters
Parameter Type Description
Width Long Width of new image in pixels
Height Long Height of new image in pixels
Depth Long Number of colors to give the image
See Also: "Specifying Color Depth” on
page 523
Remarks

If the current image has been edited but not saved, the user is asked to save the
image.

If there is no current image, a new image is created with no prompting.

Return: Boolean - The success of the creation. A true denotes success, a false
failure.

Method: disableStyleSheet

Description: Enables or disables a linked or inline style sheet as identified by its
title.

Object: "eWebEditPro ActiveX Control Object”
Syntax

eWebEditPro.Editorl.disableStyleSheet (strTitle, bDisabled As Boolean)
Parameters

strTitle - A unique identifier that represents this style sheet. For an inline style
sheet, the title is the tag that the style affects; for a linked style sheet, the title is
the style sheet's URL.

bDisabled - Boolean: True: disable the style sheet; (False is not operational as a
value)

Example

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 54

Assume that you added an inline style sheet.
strResult = eWebEditPro.Editorl.addInlineStyle("'P", "font-family:Arial'™)

This code disables that style sheet.
eWebEditPro.Editorl.disableStyleSheet "P", True

This code re-enables it.
eWebEditPro.Editorl.disableStyleSheet "P", False

Method: disableAllStyleSheets

Description: Enables or disables all style sheets for an editor.
Object: "eWebEditPro ActiveX Control Object”

Syntax

eWebEditPro.Editorl.disableAllStyleSheets()

Method: edit

Description: Opens a popup window with the editor in it. This method is called
when the button created by createButton is clicked.

Parameters:

elementName - The name of the HTML element that stores the content. The
element name may contain the form name to differentiate elements of the same
name in different forms, for example: “frmMain.Content”.

Object: "eWebEditPro Object”

Method: EditFile

Description: Loads the given file for user editing.
Object: "Image Editor Object”

Parameters
Parameter Type Description
FilePath String The location of the file to edit. This file

could be
® on the local system
® available on the server

® aremote file accessed over the
Internet

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 55

Remarks

If the file is accessed over the Internet, it should be saved locally. See Also:
"Method: Save” on page 92

Return: Boolean -The success of the load. A true denotes success, a false
failure.

Method: EditFromHtml

Description: Parses a specified HTML tag and extracts information about the
image and associated named data from the attributes.

Object: "Image Editor Object”

Parameters
Parameter Type Description
HTML String The full HTML tag with all required
attributes.
Remarks

The HTML string consists of a fully valid HTML tag. Only one tag is included. Here
are some examples:

<table background="\\imgserver\backgrounds\trees.gif">
<body background="'c:\mystuff\images\smooth.gif">

All valid attributes and custom attributes are maintained as named data values.
The title or alt text is maintained as the description.

For non-IMG tags, the image name is contained in the BACKGROUND attribute.
Otherwise, it is contained in the SRC attribute.

Tag Image TitleAttribute
FileAttribute

body background title

img src alt

table background title

td background title

Return: String - the name of the file contained within the tag.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 56

Method: EnableCreation

Description: Enables or disables the user interface that allows the user to create

a new image.

Object: "Image Editor Object”

Parameters

Parameter

Type

Description

Allow

Boolean

If true, the user can create a new image.
The default is true.

Even if image creation is not allowed, the
client application or script can create a
new image.

To prevent users from creating new
images, make sure the script does not let

the user do so through the user interface.

Remarks

One of several methods that control the user interface so that content
management systems can operate efficiently and effectively.

Return: Boolean - The setting’s previous value so that the caller can restore the

value later if needed.

Method: EnableFormatChange

Description: Enables or disables the user’s ability to change the file format and
select the number of colors for an image.

Object: "Image Editor Object”

Parameters

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

57

Parameter

Type

Description

Allow

Boolean

If true, the user can change the image
file’s format and color depth. The default
is true.

See Also: "imgfmt” on page 517;
"Specifying Color Depth” on page 523
Even if changing an image’s format and
color depth is not allowed, the client
application or script can still change its
format or depth.

To prevent users from changing the
format and color depth, make sure the
script does not let the user do so through
the user interface.

Remarks

If an image was created, and no format is specified, this setting is ignored.

This is one of several methods that control the user interface so that content
management systems can operate efficiently and effectively. For example,
changing a file’s format may break links to it.

Return: Boolean - The setting’s previous value so that the caller can restore the

value later if needed.

Method: EnableNameChange

Description: Enables or disables a user’s ability to change the name of the

image file.

Object: "Image Editor Object”

Parameters

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

58

Parameter

Type

Description

Allow

Boolean

If true, the user can change the image
file’s name. The default is true.
See Also: "namechange” on page 517

Even if changing an image’s name is not
allowed, the client application or script
can still change the file name.

To prevent users from changing the
name, make sure the script does not let

the user do so through the user interface.

Remarks

If is an image was created and no name is specified, this setting is ignored.

This is one of several methods that control the user interface so that content
management systems can operate efficiently and effectively. For example,
changing a file’s format may break links to it.

Return: Boolean - The setting’s previous value so that the caller can restore the

value later if needed.

Method: ErrorClear

Description: Clears any current errors.
Object: "Image Editor Object”

Parameters: None
Remarks

Errors are maintained internally. The client can always retrieve the last error, no
matter how far back in the process the error occurred.

This method allows the client to clear errors to ensure that when the user sees an
error, it occurred after the error was cleared.

Return: Void

Method: ErrorDescription

Description: Retrieves a text description of the last error encountered.

Object: "Image Editor Object”

Parameters: None
Remarks

Errors are maintained internally. The client can always retrieve the last error, no
matter how far back in the process the error occurred.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

59

There should be an attempt to translate all errors. The return string should be in
the language of the user's system.

Return: String - the text description

Method: ErrorValue

Description: Returns a numeric value representing the last error encountered.
Object: "Image Editor Object”

Parameters: None

Remarks

Errors are maintained internally. The client can always retrieve the last error, no
matter how far back in the process the error occurred.

This method is used when there is a need to quickly check an error or to avoid the
translation issue.

See Also: "Method: ErrorValue” on page 60
Return: Long - A number value defining the error.

Method: EstimateContentSize

Description: Estimates the size of current content. Use this method with routines
that quickly need to know the content size.

The true size is the size of the buffer returned when published content is cleaned
and removed.

Parameters:

ContentType - The part of the content to examine. The value can one of these
case-insensitive values.

® ‘“whole” - The whole HTML document.
® “pody” - The body of the content.

® ‘“text” - The size of the text in the content.

Object: "eWebEditPro Object”

Return: The returned long value is an estimate of the number of characters in the
selected content.

Example
Examples of how the EstimateContentSize method can be used in ewep.js.

function eWebEditProEditor_save(objValueDestination)

{

if(1this.isSizeExceeded(this.editor_EstimateContentSize(*"WHOLE™)))
{
this.status = EWEP_STATUS_SAVING;
var sContent = eval("this.editor.” + this.editorGetMethod + "()");

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 60

if (Mthis.isSizeExceeded(sContent.length))

{
objValueDestination.value = sContent;
this.status = EWEP_STATUS_SAVED;
this.initEvent("onsave™);
if (this.raiseEvent(onsave') == false)
{
return false;
¥
}
else
{
ShowSizelsTooLarge(this, "save™);
return false;
b
3
else
{
ShowSizelsTooLarge(this, "save™);
return false;
b
b
function ShowSizelsTooLarge(objedit, seventsource)
{
objedit.status = EWEP_STATUS_SIZEEXCEEDED;
objedit.initEvent(*'onerror™);
objedit.event.source = seventsource;
if (objedit.raiseEvent(‘'onerror') != false)
ifT (eWebEditProMessages.sizeExceeded)
{
alert(eWebEditProMessages.sizeExceeded);
3
3
3

Method: ExecCommand

Description: Directly executes a command name, with parameters, without going

through the eWebEditPro command mechanism.

The command is not returned to the client as with the higher level ExecCommand

method.
Object: "Image Editor Object”
Parameters

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

61

Parameter Type Description

strCommand String A string containing the command, for
example, cmdopen

strText String A string that may contain text data related
to the command. Typically not used.

iData Long A long integer value that may contain
numeric data related to the command.
Typically not used.

Return: None

Method: ExecCommand

Description: Causes the editor to perform the specified operation.
Object: "eWebEditPro ActiveX Control Object”
For more information, see "Creating a Custom Command” on page 215 and

"Standard Commands” on page 199.

Method: FileExistsLocally

Description: Uses the value given to SrcFileLocationPath to determine if

the file exists on the local system.

This can be used for error checking: if the user types in a bad path, this method

can detect it.

Object: "Parameters Object”

Return: Boolean

Method: FindDataField

Description: Finds the CXML data object specified by the given xpath. The xpath
must start at the root, for example, /root/Groupl/Fieldl.

The xpath can include numeric predicates, for example, /root/Groupl[2]/
Fieldl, where Groupl allows more than one. Also, the xpath can be appended
with pound sign (#) and number, for example, /root/Groupl/Field1#2. This
means “select the second field with xpath of /root/Groupl/Fieldl”.

NoOTE This is not standard XPath.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 62

NOTE Predicate and #n are not useful in design mode because fields are not repeated.

Object: "Parameters Object”

Parameters
Parameter Type Description
string xpath String The xpath to the specified object.

Return: the CXMLData object

Method: FirstCommand

Description: Sets the current reference to the first command available. The
reference value held by the script does not change. The reference change is
internal to the command mechanism.

To further any enumeration, see “Method: NextCommand” on page 83.
Object: "ObjectCommand Item Object”

Parameters
Parameter Type Description
StrName String Receives the name of the first command.
StrCaption String Receives the caption of the command. If a text
item, it is the text. If a list box, it is the currently
selected item text.

Return: If true is returned, it was able to find a command.

Method: Focus

Description: Programmatically sets the focus to the eWebEditPro editor using
JavaScript. For example:

eWebEditPro. instances[sEditorName].editor.focus();

Object: "eWebEditPro ActiveX Control Object”

Method: GetActiveStyleSheetTitles

Description: Returns a comma-delimited list of the titles of the active styles.
Object: "eWebEditPro ActiveX Control Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 63

Syntax
strResult = eWebEditPro.Editorl.getActiveStyleSheetTitles

Parameters

strResult - The comma-delimited result set
Example

Given this sequence of adding styles:

strResult = eWebEditPro.Editorl.addLinkedStyleSheet(App.Path & "\" & "ektNormal.css")
strResult= eWebEditPro.Editorl.addLinkedStyleSheet(App.Path & '"\testpage.css"™)
strResult = eWebEditPro.Editorl.addInlineStyle("P", "font-family:Arial')

strResult = eWebEditPro.Editorl.addLinkedStyleSheet(App.-Path & '"\testpage3.css")

And this disable call:

eWebEditPro.Editorl.disableStyleSheet App.Path & "\" & "ektNormal.css", True
The call:

strResult = eWebEditPro.Editorl.getActiveStyleSheetTitles
Yields the three remaining active styles (testpage.css, P, testpage3.css):

[value of App.Path]\testpage.css,
P,
[value of App.Path]\testpage3.css

Method: getBodyHTML

Description: Saves the content within the BODY tags as HTML. The HTML is a
valid fragment.

Object: "eWebEditPro ActiveX Control Object”
Using getBodyHTML with eWebEditPro

If you are using eWebEditPro+XML and a full XML document loads into the
editor, getBodyHTML returns the full XML document. (That is, its behavior
matches the getDocument method.) This happens for the following reasons:

® There is no “body” in an XML document.

® Any transformations may prevent the detection of any “body”-like content
section.

® getBodyHTML is the default method used by the core JavaScript for
retrieving content. The method ensures that if you use the default settings in
the core JavaScript, the settings work with XML.

If you want to transform an XML document to make it look as well formatted as an
HTML document, you must use the internal Load and Save transformation file
settings. (An XML document internally transformed into HTML is still recognized
as an XML document.)

If you load an XML document that was transformed into an HTML document
outside of eWebEditPro, the document is considered HTML, not XML. In this
case, getBodyHTML retrieves only the body information.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 64

Example:

<p>Both of the buttons below return the same content if a full XML document is loaded.</p>

<input type="button" value="View Full" onClick="window.document.frmeditorl.ViewHTML.value
eWebEditPro. instances["MyContentl"] .editor.getDocument()'>

<input type="button" value="View Body" onClick="window.document.frmeditorl.ViewHTML.value =
eWebEditPro. instances["MyContentl®] .editor.getBodyHTML()"">

Method: getBodyText

Description: Returns the content text without formatting. Note that only the text is
returned, not the html code.

This method is used by browser-based email applications that need both content
with HTML tags and content that is text only.

To use this method, first add a hidden field to post the text to the server. Then,
when the content is saved, copy the text from the editor into the hidden field.
These steps illustrate how to use this method.

1. Add a hidden field to store the text. For example,
<input type=hidden name="MyContentTextl" value=""">

2. Add JavaScript to copy the text to the hidden field. Use the
eWebEditPro.onsave event. This event fires when the content is saved, that
is, copied from the editor to the hidden content field.

For example, if formName is the name of your form and MyContentl is the
name of the eWebEditPro editor, use this code.

<script language="JavaScriptl.2">

eWebEditPro.onsave = "document.formName.MyContentTextl.value =
eWebEditPro. instances.MyContentl.editor.getBodyText()";
</script>

3. Modify your server-side code to process the text. You may wish to save it in a
database field for text searches without the HTML tags. Alternatively, you
may wish to email the text to clients with text-only viewers.

Object: "eWebEditPro ActiveX Control Object”

Method: GetContent

Description: Retrieves the specified content type from the current edit session.
This can be the body of the content, the data entered, or just the header
information. Supported content types are listed in "Content Type Categories” on
page 507.

Object: "eWebEditPro ActiveX Control Object”
Parameter: String - the content type to retrieve

Return Type: String - the content retrieved

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 65

Example:
sContent = objlnstance.editor.GetContent("*htmlheader™);

Method: getDocument

Description: Saves the entire HTML document that is currently in the editor.
Object: "eWebEditPro ActiveX Control Object”

Method: GetFieldValue

Description: Reads the value from the given data item. The return value is the
value currently assigned to the data item.

Object: "Automatic Upload Object”

Parameters

Parameter Type Description

I[temName String The name of the data item.
Example

txtDataValue.Text = _
m_objUpload.GetFieldValue(txtDataName.Text)

Return
String

Definition of a Field

A field is a named piece of data. When a file is transmitted to the server, fields
transmit additional information about the file to the server. Fields consist of a Field
Name and Field Data. The name identifies the field, while the data is the field’'s
contents.

A server can examine the field data and act on the values. An example is a field
that transmits the file’s category. The server can read this field and, from the
category value, determine where to upload the file.

The following is a subset of standard fields. They are normally filled in by the
editor when a file is uploaded to the server.

Field Description

extension_id A numeric ID that identifies the extension. This can be
used to categorize the file in a database. It is offered as
a convenience only.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 66

Field Description

extensions The list of valid extensions specified in the configuration
file.

The receiving client can review these extensions to
ensure the file being uploaded is acceptable. If the file
extension is not acceptable, set the discard attribute
of the FILEINFO element to true.

See Also: "FILEINFO”

file_size The file’s size in bytes — cannot change.
file_title The file’s description, title, or alt text.
file_type A numeric value that corresponds to a file type.

The value lets a server script determine the type of file
being uploaded. The server can then decide how to
store and process the file.

For a list of file types and their corresponding numeric
values, see "Appendix D: Automatic Upload File Types”.

height The height of the image in the file. If 0, the height is
unknown.

img_date The date of the file — cannot change.

uploadfilephoto The file selection field — cannot change.

web_media_path The requested logical location where a browser can find
the file, such as http://www._mysite.com/
uploads.

width The width of the image in the file. If O, the width is
unknown.

Method: GetFileDescription

Description: Returns the description of a given file in the list of files added for
upload. If the file does not exist in the current list of files, the return value is blank.

Object: "Automatic Upload Object”
Return Type: String

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 67

Parameters

Parameter Type Description

FileName String The full path and name of the file. It
cannot be an abbreviated or relative
path.
The FileName is not case sensitive.

Syntax
var sFileDesc = objAutoUpload.GetFileDescription(sUploadFilePathName)

Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName] .editor_MediaFile() .AutomaticUpload();
var sFileDesc = objAutoUpload.GetFileDescription(sUploadFilePathName);

Method: GetFileStatus

Description: Retrieves the current upload status of the specified file in the list of
files added for upload. The status can be a combination of any values below.

Value Description

0x00 No activity/doesn't exist in the list of files
0x01 Local file not selected by user for upload
0x02 Local file selected by user for upload.

0x04 Keeping local and not allowing user selection
0x08 Already uploaded

0x10 Local path but doesn't exist locally

If the specified file does not exist in the list, the return value is 0.
Object: "Automatic Upload Object”
Return Type: Long

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 68

Parameters

Parameter Type Description
FileName String The full path and name of the file. It
cannot be an abbreviated or relative
path.
It is not case sensitive.
Syntax

ar sFileStat = objAutoUpload.GetFileStatus(sUploadFilePathName);

Example
var objAutoUpload =

eWebEditPro. instances[g_sEditorName] .editor_MediaFile() .AutomaticUpload();
var sFileStat = objAutoUpload.GetFileStatus(sUploadFilePathName);

Method: getHeadHTML

Description: Returns the <HEAD> through </HEAD> HTML of the current
document as a string, including the HEAD tags.

Object: "eWebEditPro ActiveX Control Object”

Syntax

strHead = eWebEditPro.Editorl.getHeadHTML

Example

eWebEditProl._Editorl.getHeadHTML

returns

<HEAD><TITLE>eWebEditPro Test Page</TITLE>

</HEAD>

Method: Getlmagelnformation

Description: Retrieves specified information about an image.

Object: "Image Editor Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

69

Parameters

Parameter Type Description

InfoName String The name of the data item to retrieve:

® width - Image width in pixels. (Not
the display width -- the actual width.)

® height - The height of the image in
pixels.

® colors - The color depth, in the for-
mat described for colors. (See Also:
"Specifying Color Depth” on
page 523

® format - The image’s format, such as
image/gif, image/png, or image/
jpg.(See Also: "Specifying Image
Format” on page 523)

® file name - The saved file name of
the image. This is not the assigned

name, but the name of the image file
saved on the local system.

The case is ignored.

Remarks

The method retrieves each item separately to avoid conflicts with structures,
collections, or objects that are part of different client applications and scripts.

Here is a VB example:

Dim strval As String

strVal = objEditlmage.Getlmagelnformation('width'™)
After this call, the string value is a number, such as 1280.

Return: String - The value of the requested image property. Numeric values
return as a string value representing the number in a decimal format.

Method: getOpenerinstance

Description: Valid in popup pages opened using
eWebEditPro.openDialog(), this method returns a reference to the Instance
JavaScript object responsible for opening this popup.

Example

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 70

if (eWebEditProUtil.isOpenerAvailable())

{

var objlInstance
var oEditor = o
var sSelectedHT!

}

= eWebEditProUtil.getOpenerinstance();
bjInstance.editor;
ML = oEditor.getSelectedHTML();

Object: "eWebEditProUtil Object”

Method: getProperty

Description: Retrieves the property name given.

This method provid

es Netscape compatibility.

It is better to use the other getProperty methods to return the correct type. If this
method is used, the data type is not guaranteed.

Object: "ObjectCommand Item Object” and "Parameters Object”

Parameters
Parameter Type Description
Name String The name of the property to retrieve.

Return: The data as a variant. The data type is not guaranteed.

Method: getProperty

Description: Reads from the ActiveX control property.
Object: "eWebEditPro ActiveX Control Object”

Method: getPropertyBoolean

Description: Returns the value of a Boolean property.
Object: "eWebEditPro ActiveX Control Object”

Method: getPropertylnteger

Description: Returns the value of a Numeric property.
Object: "eWebEditPro ActiveX Control Object”

Method: getPropertyString

Description: Returns the value of a String property.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

71

Object: "eWebEditPro ActiveX Control Object”

Method: getPropertyString

Description: Retrieves the property name given as a string.
Object: "ObjectCommand Item Object” and "Parameters Object”

Parameters
Parameter Type Description
Name String The name of the property to retrieve.

Return: The data of the property as a string.

Method: getPropertylnteger

Description: Retrieves the property name given as an integer.
Object: "ObjectCommand Item Object” and "Parameters Object”

Parameters
Parameter Type Description
Name String The name of the property to retrieve.

Return: The data of the property as an integer.

Method: getPropertyBoolean

Description: Retrieves the property name given as a boolean.

Object: "ObjectCommand Item Object” and "Parameters Object”

Parameters
Parameter Type Description
Name String The name of the property to retrieve.

Return: The data of the property as a boolean.

Method: getSelectedHTML

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

Description: Returns the currently selected content including any HTML tags.
The HTML will be a valid fragment.

Pasting the content back into the editor may cause side effects. For example,
selecting part of a table returns any HTML tags for a complete table. Pasting it
back will insert a table within the table.

Object: "eWebEditPro ActiveX Control Object”

Method: getSelectedText

Description: Returns the currently selected text with no formatting. Only the text
is returned, not the html code.

Object: "eWebEditPro ActiveX Control Object”

Method: GetValidFormats

Description: Retrieves the current set of valid file formats supported by the
feature. See Also: "imgfmt” on page 517

Object: "Image Editor Object”
Parameters: None
Remarks

The list of valid formats may not match the list of formats specified with the
“SetValidFormats” method. Any formats not supported by the core feature are
discarded.

Return: String - the list of valid image formats. See "Specifying Image Format” on
page 523.

Method: HideAbout

Description: Hides the about command button, if it is shown.

NoOTE It is better to use the ShowAbout property, contained within the eWebEditPro
interface.

Object: "Toolbars Object”
Parameters

Parameter Type Description

none

Return: This returns the previous setting for hide.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 73

Method: HideAllMenus

Description: Quickly hides all toolbar menus.
Object: "Toolbars Object”

Parameters: none

Return: There is no return value with this item.

Method: HTMLEncode

Description: HTML encodes the given string.
Example
slnputTag += " value="" + eWebEditProUtil.HTMLEncode(sValue) + ""%;

Object: "eWebEditProUtil Object”

Method: ImageEditor

Description: Retrieves the Image Edit object that exists within WeblmageFX.

The Image Editor object is always returned even if WeblmageFX is not installed. It
is always best to check with the object to ensure that WeblmageFX is available.

Object: "Image Editor Object”
Parameters: None

Example
function ChecklmageEditor(sEditorName)
{
var objlnstance = eWebEditPro.instances[sEditorName];
var objlmageEdit = objlnstance.editor.ImageEditor();
if(false == objlImageEdit. IsPresent())
{
alert(""The Image Editor is not available.™);
3
b

Method: insertMediaFile

Description: Inserts an image file (or other file) to the editor. For images, the IMG
tag is used.

This method sets properties in the ActiveX control's Media File Object (see “The
Mediafiles Feature” on page 430) and then executes the cmdmfuinsert command.

Object: "Instances Object”
Parameters: (strSrcFileLocation, bLocalFile, strFileTitle, nWidth, nHeight)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 74

® strSrcFileLocation - the path to file being inserted. The path can be the full
path or relative to the host name. If a relative path, the editor uses the current

page location/BaseURL to determine the file’s location.

® DblocalFile - true if the file is on the user’s computer; false if the file is on the

server.

® strFileTitle - the image title; if one is not passed, the user must enter one

in

the Title field of the Image Selection Screen. It is used as the image’s alt text.

® nWidth - the width of the image in pixels (if the file is an image)

® nHeight - the height of the image in pixels (if the file is an image)

Example

eWebEditPro. instances["MyContentl'].insertMediaFile("mypic.jpg", false, "My Picture Title",
80, 60);

Method: isChanged

Description: This method returns
® true if the content in any editor on the page was modified

® false if no content was changed

See Also: "Method: IsDirty” on page 76
Object: "Instances Object”

Method: isChanged

Description: Use this method to determine if the editor content has changed, for

example eWebEditPro. isChanged() .-

You can also use the Instance object method
eWebEditPro.instances[i]-isChanged().

This method returns
® true if the content in any editor on the page was modified

@ false if no content was changed

Only editors with modified content have their content copied to the hidden field
Object: "eWebEditPro Object”

How this Method Emulates onchange

This method enables eWebEditPro to emulate the onchange event common to

standard HTML input elements and the TEXTAREA field. You can combine the

onblur event with the isChanged() method to determine when focus has left the

editor and content has been modified.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

75

Method: IsDirty

Description: Returns a non-zero (boolean true) value if the user has modified the
image.

Object: "Image Editor Object”
Parameters: None
Return: Boolean

Method: isEditor

Description: Returns true if an instance of an editor exists by the given name and
that instance has a valid 'editor' property.

Return false if an instance of the editor does not exist or does not have an 'editor'
property. For example, the instance may be a textarea field because ActiveX is
not supported.

Object: "eWebEditPro Object”

Example:
if (eWebEditPro.isEditor(“'MyContentl™))
{
eWebEditPro. instances["'MyContentl'].editor.pasteHTML(*"Hello World");
3

Method: isEditor

Description: Returns true if the .editor object is available. Returns false if the
.editor object is undefined or null.

Object: "Instances Object”
Example:
var objlInstance = eWebEditPro.instances[0];

if (objlInstance && objlnstance.isEditor())

{
objInstance.editor.pasteHTML(*'Hello World");

}

Method: isEditorReady

Description: If this is true, the editor is ready to process a command. If false,
any commands given or methods called are ignored. This function is normally
used only during the “Ready” natification when the editor is loading.

This function is only required when a long series of configuration methods is
called in the editor. Because JavaScript is asynchronous, the editor may be
processing the previous method when the next JavaScript line is run.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 76

It is good practice to use the time out functionality before checking whether the
editor is ready. Often, the next JavaScript line will execute before the editor
receives the previous method call.

Object: "eWebEditPro ActiveX Control Object”

The following is an example of using this function.

function RunEditorReadyProcess(sEditorName)

{
// This starts the process of setting up the editor.
// We need to have timeouts due to the asynchronous nature
// of JavaScript. We need to have a wait for each step.

// We are going to turn off the borders so that the usage looks better.

eWebEditPro. instances[sEditorName].editor.ExecCommand(**cmdshowborders™,
EOF

// The timeout is done before we make the call to

// check if the editor is ready so that the command

// can reach the editor and start processing.
setTimeout("RunPoemTagStep("'" + sEditorName + "")", 10);

}
function RunPoemTagStep(sEditorName)
{
// JavaScript iIs re-entrant, so the editor may be busy with another
// script command when this is encountered. The ready state
// of the editor should be checked when many commands are run
// in immediate succession. This ONLY needs to be checked when many
// editor commands are run in immediate succession.
if(eWebEditPro.instances[sEditorName].editor.isEditorReady() == false)
{
//Not yet ready, come back later.
setTimeout("RunPoemTagStep (""" + sEditorName + "')", 10);
}
else
{
RunBasicTempateStep(sEditorName) ;
}
}

Method: isOpen

Description: Can be used to count the number of open popup windows. A popup

window is opened when the user clicks the 'Edit' button created by an
eWebEditPro function.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

77

This information could be used to alert the user to save and close the popup
window prior to submitting.

Example
function countOpenPopups()

{

var iCount
for (var i

0;
0; 1 < eWebEditPro.popups.length; i++)

iT (eWebEditPro.popups[i]-isOpen())
{

iCount++;
3
T

return iCount;

b
Object: "Popup Object”

Method: isOpenerAvailable

Description: Valid for popup pages, this method determines if the page that
opened the popup is still open.
Example

iT (eWebEditProUtil.isOpenerAvailable())
{

var objlInstance = eWebEditProUtil.getOpenerinstance();
var oEditor = objlnstance.editor;
var sSelectedHTML = oEditor.getSelectedHTML();

}.

Object: "eWebEditProUtil Object”

Method: IsPresent

NOTE

Description: This method returns true if WeblmageFX is installed properly on the

client's system.

If this method returns false, WeblmageFX is not installed or is not installed
properly. Ektron suggests that a false return should disable client scripting
functionality that interacts with WeblmageFX.

If the feature exists on a client but has not been installed properly, this method
returns false.

”

Object: "Image Editor Object
Parameters
None

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

78

Method: IsTagApplied

Description: Indicates if a specified XML tag can be applied at the current cursor
location.

Object: "eWebEditPro ActiveX Control Object”

Parameters: StrTagName (String) - The number of instances of the custom tag
specified with this parameter is counted.

Returns: True if the specified custom tag wraps the current selection. The tag can
be any tag applied the selection.

If no text is selected, the current cursor location is considered the selection.

Example: You want to verify that a selected style can be applied at the current
cursor location. For example, you may want to verify that a tag is being entered at
the correct location within your DTD.

function ApplyThisTag(sEditorName, strTaglinfo)

{
var objEditor = eWebEditPro.instances[sEditorName];
if(objEditor._editor.IsTagApplied(*'NewsML'™))
{
eWebEditPro. instances[sEditorName].editor.ExecCommand(*'cmdcustapplytag', strTaglnfo, 0);
3
else
{
alert("'You need to be somewhere within the NewsML section to apply this tag.");
3
b

Method: IsValid

Description: Returns “true” if the interface references a valid command. If the
interface does not reference a valid command, all interface methods and
properties are inactive.

The interface may not reference a valid command if you originally set it by
referencing a command, and then you delete the command through another
interface.

Object: "ObjectCommand Item Object”

Method: IsVisible

Description: This method returns true if WeblmageFX is currently visible to the
user from within eWebEditPro. A true value means that the user is currently
editing an image.

This method returns False if WeblmageFX is currently not available to the end
user. It may not be currently displayed or it may not be installed.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 79

You can use the IsPresent method to determine if the editor is installed on the
client system. See Also: “Method: IsPresent” on page 78.

Object: "Image Editor Object”

Parameters: None

Method: ListCommandName

Description: Available only with list box commands. Returns the name of the
command associated with the item at the index specified.

If there is no command associated with that index, it returns an empty string.
Object: "ObjectCommand Item Object”

Parameters
Parameter Type Description
idx Integer The 0-based index into the list of commands.

Return: The command name associated with the index. If no command is
associated, either the name of the list command or nothing is returned.

NOTE To retrieve the index of the selected list item, use the CommandIitem's CmdIndex
property: objCommand .CmdIndex; or
objCommand.getPropertylnteger(*'CmdIndex").

Method: ListFilesWithStatus

Description: Retrieves a list of files with a specified status.

The list organizes the files and their descriptions in pairs. All values are delimited
by the given delimiter value. The file name is the first value, and the description is
the second. The first/second list continues for all files.

The editor uses these bit values to designate file status.

Value Description

0 No activity; will never show in any file retrieval
1 Local file waiting for upload selection

2 Selected by user for upload

4 User selects to keep local

8 Already uploaded to the server

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 80

Value

Description

16

Local file but doesn't exist locally

32

File is reserved for later use

When a file is added, it is automatically assigned a status value of 1.

Object: "Automatic Upload Object”

Parameters

Parameter

Type

Description

Status

Long

The or'ed bit value that designates the
file's status.

Examples of How to Use this
Parameter

To get a list of files that are either “Local
file waiting for upload selection” or
“Selected by the user for upload,” you
can bit wise ‘or’ the bits together into a
number. The files with those statuses are
returned.

lor2=3.

When a file is uploaded, its status
automatically changes to “Already
Uploaded.” So, to get a list of already
uploaded files, specify the “Already
Uploaded” bit without or’'ing anything with
it.

To see a list of files that are used but
currently local, you could or together the
“Local file waiting for upload selection”,
“Selected by the user for upload,” and
“User selects to keep local” bits.

lor2ord4=7

Flnally, to get a list of every file in the list,
regardless of status, set all the bits on. A
good shortcut is to use the value -1
because, for PCs, that value sets all the
bits on.

Return
String
Example

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 81

function ListFilesWithStatus(iSelectStat)

{
if((iSelectStat >= 0) && (iSelectStat < 8))
{
var objAutoUpload = GetAutoUploadObject();
if((null !'= objAutoUpload) && (“'undefined” != typeof objAutoUpload))
{
var sList =
objAutoUpload.ListFilesWithStatus(g_iFileStatusList[iSelectStat], "|');
if(sList.length > 0)
{
var aryQuery = sList.split("|");
var pair = [1;
for(var i = 0; i < aryQuery.length; i+=2)
{
alert(aryQuery[i+1] + " [+ aryQuery[i] + "1');
3
¥
else
{
alert(""No files came back with that status.");
}
3
else
{
alert(*"Could not get an Auto-Upload object. Can"t list files.™);
3
3
else
{
alert("Invalid status of " + iSelectStat + """ -- can"t list files.");
3
3
Method: load
Description: Loads content into editor. Not typically needed. valueSource may be
® undefined (content is loaded from the content element)
® an object with a 'value' property
® astring
Object: "Instances Object”
Method: load

Description: Loads content into all the in-line editors on the page from the
standard HTML elements (typically an input type=hidden field) with the same
name.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 82

Object: "eWebEditPro Object”

Method: LoadedFileName

Description: Returns the name of the loaded image file. This is the original
name, not the one selected by the user. This is normally the remote location of the
image, but it can be an image loaded from the local system.

This can be used as a key to the image.

This will match the value returned by SavedFileName if a local file was loaded.
Object: "Image Editor Object”

Parameters: none

Return: string

Method: Locale

Description: Specifies the locale file to use. If this method is not set, the locale is
determined by system settings. If this is set, the locale file specified is used.

See Also: "Displaying Menus and Dialogs in a non-European Language”
Object: "Parameters Object”

Parameters: none

Return: string

Example:

<input type=hidden name="MyContentl" value''>
<script language="JavaScriptl.2">
<i--

ifT (typeof eWebEditPro == "object')

{
eWebEditPro.parameters.locale = "locale0000b.xml";
eWebEditPro.create(*'"MyContentl™, *100%', 400);

b

//-->

</script>

Method: MediaFile

Description: Returns a reference to the Media File object. All media file
functionality is accessed through this object.

See Also: "Media File Object” on page 451
Object: "eWebEditPro ActiveX Control Object”

Method: NextCommand

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 83

Description: Sets the current reference to the next command available. The
reference value held by the script does not change. The reference change is
internal to the command mechanism.

To initiate any enumeration, see “Method: FirstCommand” on page 63.
Object: "ObjectCommand Item Object”

Parameters
Parameter Type Description
StrName String Receives the name of the first command.
StrCaption String Receives the caption of the command. If a text

item, it is the text. If a list box, it is the currently
selected item text.

Return: If true is returned, the method found a command. If it returns false, there
are no more commands to enumerate. The reference will be on the last command
enumerated.

Method: openDialog

Description: Opens the popup Web page specified by fileName. The given editor
name is defined as 'editorName' in the URL query string parameter.

In the popup page, include eweputil.js and then use eWebEditProUtil.editorName
to retrieve the editor name.

See Also: "eWebEditProUtil Object” on page 4

You can also specify the window name and window features. The window name
and window features are parameters to the standard window.open() JavaScript
method.

Object: "eWebEditPro Object”
Parameters: editorName, fleName, query, windowName, windowFeatures

Example:
function showFormElementDialog(sEditorName, sFormElement, sWin, width, height)
{
var sWindowFeatures = "scrollbars,resizable,width=" + width + ", height=" + height;
var sFilename = "formelementinsert.htm";

eWebEditPro.openDialog(sEditorName, sFilename, "formelement=" + escape(sFormElement),

sWin, sWindowFeatures);

}

Method: outer XML

Description: Returns the XML of the custom tag as a string, for example,
<mytag>some text</mytag>.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 84

Method: openDialog

Description: Opens the popup Web page specified by fileName. The given editor
name is defined as 'editorName' in the URL query string parameter.

In the popup page, include eweputil.js and then use eWebEditProUtil.editorName
to retrieve the editor name.

See Also: "eWebEditProUtil Object” on page 4

You can also specify the window name and window features. The window name
and window features are parameters to the standard window.open() JavaScript
method.

Object: "eWebEditPro Object”
Parameters: editorName, fleName, query, windowName, windowFeatures

Example:

Method: pasteHTML

Description: replaces the selected eWebEditPro content with the string passed
to pasteHTML.

sHTMLText: the string pasted into the content at the current cursor location when
pasteHTML is executed. This string replaces any selected content. For example

eWebEditPro.Editorl.pasteHTML("'<hr>
Hello World!");

sHTML text can be plain text (for example, “hello world”) or HTML (for example,
“Hello <i>World!</i>").

The following example pastes HTML from a text field (Textl) into an editor named
MyContentl when the Paste button is pressed.

<input type=text name="Textl" value="<i>paste</i> this">
<input type=button name="btnPastel” value="Paste"
onclick="eWebEditPro.instances.MyContentl.editor.pasteHTML(Textl.value)">

For a complete sample, see the eWebEditPro sample page, ewebeditpro.htm.
Object: "eWebEditPro ActiveX Control Object”

Method: pasteText

Description: Replaces selected content in eWebEditPro with the string passed
to pasteText. The content is pasted as is. HTML tags are not interpreted.

sText: the content to be pasted into the editor's content at the current cursor
location. Any editor content that is selected when pasteText is executed is
replaced.

For example:
eWebEditPro.Editorl.pasteText(*'Hello World!');

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 85

Object: "eWebEditPro ActiveX Control Object”

Method: PopulateTagsWithStyles

Description: Applies the current, active styles to the content's tags.
Object: "eWebEditPro ActiveX Control Object”

Syntax

bResult = eWebEditPro.Editorl.populateTagsWithStyles

Parameters
bResult - Boolean True: Success; False: Failure
Defaults

This function adds some harmless default values: note “BOTTOM” and “FILTER”
in the example below.

Precedence

When rendering content, styles embedded in content tags take precedence over
header style tags.

Example

Given the style sheet added inline:

strResult = eWebEditPro.Editorl.addInlineStyle("'P", "font-family:Arial™)

Where the resulting style is:

<STYLE disabled title=P>P {
FONT-FAMILY: Arial

}

And content represented by this HTML:

<P>Sentence one</P>
<P>Sentence two</P>
<P> </P>

Calling PopulateTagsWithStyles yields:

<P style="BOTTOM: Opx; FILTER: ; FONT-FAMILY: Arial'>Sentence one</P>
<P style="BOTTOM: Opx; FILTER: ; FONT-FAMILY: Arial'>Sentence two</P>
<P style="BOTTOM: Opx; FILTER: ; FONT-FAMILY: Arial'> </P>

Method: PopupMenu

Description: Brings up a popup menu.
Object: "Toolbars Object”
Parameters

Parameter

Type Description

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 86

MenuName String The name of the Popup Menu to bring up. If the
menu does not exist or is not a popup menu style,
nothing happens

RelativeCmd String The command associated with the popup.
Optional

Return: There is no return value.

Method: PublishHTML

Description: Takes the named values and formats them into an HTML tag that
contains attribute/value combinations.

Object: "Image Editor Object”
Parameters: None
Remarks

The HTML string consists of a fully valid HTML tag. Only one tag is included. Here
are some examples:

<table background="\\imgserver\backgrounds\trees.gif">
<body background="c:\mystuff\images\smooth.gif">

All valid attributes and custom attributes are maintained as named data values.
The title or alt text is maintained as the description.

For non-IMG tags, the image name is contained in the BACKGROUND attribute.
Otherwise, it is contained in the SRC attribute.

Tag Image TitleAttribute
FileAttribute

body background title

img src alt

table background title

td background title

Return: String - The correctly formatted HTML that contains the information about
the image

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 87

Method: ReadNamedData

Description: Retrieves the data value of the data name from the file specified.

Object: "Automatic Upload Object”

Parameters
Parameter Type Description
filename string The filename in the file store where the named
data set is located.
data name string The name/id of the named data set.
Example
example: sDValue = objAuto.ReadNamedData(sFileName, sDName);

or

sbValue = objAuto.ReadNamedData(''c:\abc.jpg", "id™);

Return: string

Method: ReadResponseHeader

Description: Retrieves the header of the response sent by the server.

Object: "Automatic Upload Object”

Parameters: None

var objAutoUpload = GetAutoUploadObject();
if((null != objAutoUpload) && (“'undefined" != typeof

window.document.frmeditorl.ServerResponse.value =

objAutoUpload.ReadResponseHeader();

alert(*"Could not get an Auto-Upload object.™);

alert(*'Completed retrieving the response header.');

Example
function ShowResponseHeader()
{
objAutoUpload))
{
3
else
{
3
3

Return: String

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

88

Method: ReadUploadResponse

Description: Reads the full text returned from the server as a response to the
upload. The return value is normally an HTML page or XML data.

Object: "Automatic Upload Object”

Parameters: None

Example

txtResponse.Text = m_objUpload.ReadUploadResponse

Return: String

Method: refreshStatus

Description: Updates the values of the following properties:
® status

* islE

® isNetscape

* browserVersion

® isSupported

® isAutolnstallSupported

® isInstalled

® versioninstalled

® upgradeNeeded

Object: "eWebEditPro Object”

Method: relocate

Description: frameName = name of the frame that includes ewebeditpro.js

This method relocates the ‘on' event handlers to point to the frame where the
functions are actually defined. The frame that includes ewebeditpro.js is the frame
that defines the event handler functions.

For example

var eWebEditPro = top.eWebEditPro;
eWebEditPro.parameters.relocate(*'top™);
This method is typically not required.

Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 89

Method: RemoveFieldValue

Description: Removes the given data item so it is not sent with the upload. When
a data item is removed, it is no longer sent with the file upload.

IMPORTANT! Be careful! Standard fields can be removed, just as they can be changed, and it

may be necessary to remove them. However, if a standard field is removed,
undesired consequences may result.

Object: "Automatic Upload Object”

Parameters

Parameter Type Description

I[temName String The name of the data item
Example

m_objUpload.RemoveFieldValue txtDataName.Text

Return: None

Method: RemoveFileForUpload

Description: Removes a specified file from the list of files for uploading.

Object: "Automatic Upload Object”

Parameters
Parameter Type Description
LocalFileName String The name and path of the local file to

upload.

Example

function RemoveSelectedFile(sFileName)

{

var objAutoUpload = GetAutoUploadObject();

if((null != objAutoUpload) && (“'undefined" != typeof objAutoUpload))

{

objAutoUpload.RemoveFileForUpload(sFileName);

}

else

{

alert(*'Could not get an Auto-Upload object. Can"t list files.");

}
}

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

90

Return
None

Method: RemoveNamedData

Description: Removes the named data set from the file specified.
Object: "Automatic Upload Object”

Method: reset

Parameters
Parameter Type Description
filename string The filename in the file store where the named
data set is located.
data name string The name/id of the named data set.
Example

objAuto.RemoveNamedData(sFileName, sDName);

or
objAuto.RemoveNamedData(''c:\abc.jpg", "id");

Return: boolean

Description: Reinitializes all values to the default defined in
eWebEditProDefaults (ewebeditprodefaults.js). This method should be called
after creating an editor if properties were changed for that instance of the editor.

If reset() is not called, any changed property values apply to all subsequent
instances of the editor.

Object: "Parameters Object”

Method: resolvePath

Description: Prepends the URL with the eWebEditPro path (for example, /
ewebeditprob/).

Object: "eWebEditPro Object”

Method: RetrieveHTMLString

Description: Returns the HTML string that will be used for insertion into HTML.
Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

91

Return: Boolean

Parameter: bAsls (Boolean) Keep the name and path as assigned. Do not modify
to use the remote path or resolve the reference path.

A value of True usually means use the local path and not the remote path.
Return: The HTML string that would be inserted into the document.

Method: save

Description: Saves content. Not typically needed. objValueDestination may be
® undefined (content is stored to the content element)

® an object (the value property will be set)

Object: "Instances Object”

Method: Save

Description: Saves the currently edited image with the currently selected file
parameters.

Object: "Image Editor Object”
Parameters: None
Remarks

If parameters are missing, such as the file name, the user is prompted to supply
those values.

Return: String - the full file name of the saved image. An empty string denotes an
error.

Method: save

Description: Saves content from all the in-line editors to the standard HTML
elements (typically an input type=hidden field) with the same name.

Object: "eWebEditPro Object”

Method: SaveAs

Description: Saves the currently edited image with the specified parameters.
Object: "Image Editor Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 92

Parameters

Parameter Type Description

FileName String The name of a file that will hereafter exist
on the local system. Remote Internet
addresses are not allowed.

Remarks

To change the format as well as the file name, see "Method: Convertimage” on
page 52.

Return: String - the full file name of the saved image. An empty string denotes an
error.

Method: SavedFileName

Description: Returns the name that the file was actually saved as. Since this is
quite often a temp name, or one chosen by the user, the client can't depend on
the save name matching the loaded file name.

This will match the value returned by LoadedFileName if a local file was loaded.
Object: "Image Editor Object”

Parameters: None

Return: String

See Also: "Working with Schemas” on page 666

Method: SeparatorBarAdd

Description: Adds a separator bar to the specified toolbar. On a toolbar, it is a
vertical bar. On a popup menu, it is a horizontal bar. It is mostly used to organize
commands into groups.

See Also: "Adding a Separator Bar Between Two Toolbar Menu Items”
Object: "Toolbars Object”

Parameters
Parameter Type Description
CommandName String The separator bar is assigned an internal name.
This value receives that name. It is used as a
reference if it is modified.
ToolbarName String The name of the toolbar or menu to which to add
the bar.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 93

Parameter

Type

Description

iPosition

Integer

Position of the command within the given toolbar.
If omitted or - 1, it is placed at the end.

Return: This returns true if it successfully created the separator.

Method: SeparatorSpaceAdd

Description: Adds a separator space to the specified toolbar. It is used mainly to
organize commands into groups.

Object: "Toolbars Object”

Parameters

Parameter Type Description

CommandName String The separator space is assigned an internal name.
This value receives that name. It is used as a
reference if it is modified.

ToolbarName String The name of the toolbar or menu to which to add
the bar.

iPosition Integer Position of the command within the given toolbar.
If omitted or - 1, it is placed at the end.

Return: This returns true if it successfully created the separator.

Method: setBodyHTML

Description: This method does not exist. To load HTML content into the editor,
use the setDocument() method.

Object: "eWebEditPro ActiveX Control Object”

Method: SetConfig

Description: Specifies which configuration file to use for controlling
WeblmageFX. This can be either a local file, a remote file, or an XML data stream.

Object: "Image Editor Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

94

Parameters

Parameter Type Description

Configuration String The location of the configuration or the
stream of XML characters defining the
configuration.

Method: SetContent

Description: Assigns the given content to the editor session. Supported content
types are listed in "Content Type Categories” on page 507.

If a content type requires the editor be in a special mode, such as Data Design,
XML, HTML mode, the editor switches into the mode that allows the content to be

processed.
Object: "eWebEditPro ActiveX Control Object”
Parameters:
Parameter Type Description
Type String The type of content being set.
Content String The content to place into the current
session.
Data String If this is not an empty string, it is a string
of data to associate with the given
content.

Return Value: Boolean - True if successful
Example:
objInstance.editor.SetContent("*htmlbody", strBody, '"');

NOTE If the editor and the field have the same name, but you want to set the value of the
editor content to something other than the default text, the value that you set does
not get displayed. This is because the editor and field names are the same, so the
default text of the editor takes precedence over the set value. To change the
default content, assign unique names to the editor and field.

Method: setDocument

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 95

Description: Replaces the entire document, including all tags outside of the body
tag and style information, with the specified document. Any previous document is
completely lost.

Object: "eWebEditPro ActiveX Control Object”
Parameter

strDoc - String - The HTML document to place into the editor. This must be a
complete and valid document that contains the doctype, html, head, and any other
tags required for correct display of the document.

Return: Nothing
Example 1:

function SetFullDocument()

{
var objEdit = eWebEditPro. instances.MyContentl._editor;

objEdit.setDocument(DocHTML.value);
3
Example 2:

<input type="button" value="Set Document"
onClick="eWebEditPro.instances.MyContentl.editor.setDocument(DocHTML.value)">

Method: SetFieldValue

Description: Adds or modifies a field which is posted with either the content or
file. This value is received by the server as if it were a text field on a form.

The name given is the name of the posted field. The value is the string data to
place in that field. The receiving server extracts the value as it would any posted
text field.

If the field already exists, the given value replaces the data. If a script must
append, it needs to read, append, then write the data.

See Also: "Definition of a Field”
Object: "Automatic Upload Object”

Parameters
Parameter Type Description
FieldName String The name of the data item.
Value String The value to assign to the data item. This
can be a blank string.
Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName] .editor_MediaFile() .AutomaticUpload();
objAutoUpload.SetFieldValue(sField, sDataValue);

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 96

Return
None

Method: SetFileDescription

Description: Sets the description of the specified file. This description is posted
to the server with the file. Each file has its own description posting.

If the file does not exist, the file is added with the given description.
Object: "Automatic Upload Object”

Parameters
Parameter Type Description
FileName String The full path and name of the file. It
cannot be an abbreviated or relative
path. It is not case sensitive.
Description String The description to post with the file.
Example

var objAutoUpload =

eWebEditPro. instances[g_sEditorName] .editor_MediaFile() .AutomaticUpload();
objAutoUpload.SetFileDescription(sUploadFilePath, sDescription);

Return
None

Method: SetFileStatus

Description: Sets the status of the given file. This allows a script to select or
unselect a file for upload. (The user must still approve any upload process.)

The status value can be a combination of any of the values below.

Value

Description

0x00

No activity/doesn't exist in the list of files

0x01

Local file not selected by user for upload

0x02

Local file selected by user for upload.

0x04

Keeping local and not allowing user selection

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 97

Value Description

0x08 Already uploaded

0x10 Local path but doesn't exist locally

If the file does not exist, no action is taken.
Object: "Automatic Upload Object”

Parameters
Parameter Type Description
FileName String The full path and name of the file. It
cannot be an abbreviated or relative
path. It is not case sensitive.
Description String The description to post with the file.
Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName] .editor_MediaFile() -AutomaticUpload();
objAutoUpload.SetFileStatus(sUploadFilePath, 0x01);

Return

None

Method: setHeadHTML

Description: Sets the <HEAD> through </HEAD> portion of the document
header.

Object: "eWebEditPro ActiveX Control Object”
Syntax
eWebEditPro.Editorl.setHeadHTML(strReplacementHead)

Parameter
strReplacementHead - The HTML <HEAD>...</HEAD> replacement string.

Remarks

WARNING! Do not add styles using this method. They are not supported, and the header will
reflect incorrect information.

This feature replaces all header information. If the new header information
includes styles, the style information will appear in the HEAD tag area, but will not
remove, replace or add any style information.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 98

Example
This replaces the header with just a TITLE element:
eWebEditPro.Editorl.setHeadHTML "<HEAD<TITLE>New Header</TITLE></HEAD>"

Method: SetLocale

Description: Specifies a Locale translation file to use. This can be a local file, a
remote file, or an XML data stream.

See Also: "Modifying the Language of eWebEditPro” on page 201
Object: "Image Editor Object”

Parameters
Parameter Type Description
Locale String The location of the localization data or

the stream of XML characters defining
the localization data.

Method: setProperty

Description: Sets the named property to the value given.

See the getProperty series of methods (beginning with "Method: getProperty”) on

how to retrieve values.
Object: "ObjectCommand Item Object”

Parameters
Parameter Type Description
Name String The name of the property.
Value Variant The data to set into the property.

Return: Nothing

Method: setProperty

Description: Writes to the ActiveX control property.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

99

NOTE This property is intended for environments such as Netscape, which do not

directly support properties.

Object: "eWebEditPro ActiveX Control Object” and "Parameters Object”

function SetAutoUploadProperty(sVarName, sVarValue)

var objAutoUpload = GetAutoUploadObject();

if((null != objAutoUpload) && (“'undefined" != typeof objAutoUpload))

objAutoUpload.setProperty(sVarName, sVarValue);

alert(*"Could not get an Auto-Upload object.™);

Example

{

{

¥

else

{

b
}

Method: SetValidFormats

Description: Specifies a set of formats that are considered valid by a client

application or script.

Object: "Image Editor Object”

Parameters
Parameter Type Description
ValidFormats String The list of valid formats.

See "Specifying Image Format” on
page 523 to learn about image file
formats

Remarks

If a format is not supported by WeblmageFX, that format is discarded. If the

number of supported formats is 0, an error is generated.

Return: Long - The number of formats now supported

Method: ShowAbout

Description: Shows the about button if defined in the XML data.

NOTE It is better to use the ShowAbout property, contained within the eWebEditPro

interface.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

100

Object: "Toolbars Object”

Parameters

none

Return: This returns the previous show state of the about button.

Method: ShowActiveStylesDetails

Description: Returns a comma-delimited list of the active style sheet titles and
style information (CSS syntax text).

If all of a style’s rules are overridden but the style is still active (that is, not
“disabled”), the value of that style returns the phrase: “No Active Rules”.

Object: "eWebEditPro ActiveX Control Object”
Syntax
strStyles = eWebEditPro.Editorl.showActiveStylesDetails

Parameters

(result) - The comma-delimited list of style sheet titles and their values
Example

Given adding these styles:

eWebEditPro.Editorl.addLinkedStyleSheet(App.-Path & '"\testpage.css')
eWebEditPro.Editorl.addLinkedStyleSheet(App.-Path & '"\testpage3.css")
eWebEditPro.Editorl.addInlineStyle("'P", "font-family:""lucida console"""")

Where:
testpage.css defines a style for the P tag

strResult
strResult
strResult

testpage3.css defines styles for P, H1 and H2

The third line inserts an inline P tag style

So that:

testpage.css adds a P style

testpage3.css overrides that P style and adds a style for H1 and H2
the inline style overrides the P style yet again

Calling eWebEditPro.Editorl.showActiveStylesDetails yields the
following results.

Stylesheet:
C:\EKTRON~1\DEVELO~1\EWEBED~1\v2\Test\TestApp\testpage.css, No Active Rules

Stylesheet:

C:\EKTRON~1\DEVELO~1\EWEBED~1\v2\Test\TestApp\testpage3.css, cssText:
H1 {FONT-FAMILY: "Arial'; FONT-SIZE: 11pt; MARGIN: 0in}
H2 {FONT-FAMILY: "Arial'; FONT-SIZE: 10pt; MARGIN: 0in}

Stylesheet:
P, cssText: P {FONT-FAMILY: *"lucida console"

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 101

Method: ShowAllMenus

Description: Restores the view of menus hidden with "Method: HideAllMenus”.
Object: "Toolbars Object”
Parameters

Parameter Type Description

none

Return: There is no return value.

Method: TagCount

Description: Indicates how many times a specified XML tag exists in the content.
Object: "eWebEditPro ActiveX Control Object”

Parameters: StrTagName (String) - The name of the custom tag to search for and
count the occurrences of.

Returns: The number of times a custom tag is used in the content. This is a long
integer value.

Example: Before loading content, you want to check and see if it has already
been loaded. To check for this, use this code.

if(objEditor._editor._TagCount(*'NewsML"™) == 0)

{
objEditor.editor.pasteHTML("'content goes here™);

}

else

{

alert("You already have a news item in your content.");

}

Method: Thumbnail

Description: Creates a thumbnail of the current image or a specified image file.
Object: "Image Editor Object”
Parameters

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 102

Parameter Type Description

ImageFile String The location of a file to load and from which to
create a thumbnail.

If this value is empty, a thumbnail is made of the
current image. If there is no current image and no
ImageFile location, an error occurs.

DestFile String The thumbnail’s destination location.
If this value is empty, an error occurs.

Width Long The thumbnail’s width in pixels.

If the value is 0, the width maintains proportionality
with the height. If both width and height are 0, the
width defaults to 32 and the height maintains
proportionality with the width.

Height Long The height in pixels. If the value is 0, the height
maintains proportionality with the width.

Colors Long The bit depth. If no value is specified, the bit depth
is 8 (256 colors).

See Also: "Specifying Color Depth” on page 523

Format String The image file format. If blank, the format is
determined by the extension of the current or
loaded file.

See Also: "Specifying Image Format” on page 523

Remarks

If a current image has unsaved edits and it must be replaced with a specified
image (via the ImageFi le parameter), the user is asked to save the modified
image.

If information is missing, the user is prompted to supply it.

Return: String - The resulting full file name. This may not match the given file
name because the specified format extension may not match the given filename
extension.

Method: ToolbarAdd

Description: Creates a toolbar and adds it to the toolbars available to the user.
Object: "Toolbars Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 103

Parameters

Parameter Type Description

ToolbarName String The name of the toolbar. This must be
unique among all currently created
toolbars.

Caption String The toolbar caption.

CaptionAlignment

etbCaptionAlign
ment

The alignment of the toolbar caption.

See Also: “etbCaptionAlignment” on
page 196

Style etbToolbarStyles | The style of the toolbar.
See Also: “etbToolbarStyles” on
page 196

Options Long Bit field of etbToolbarOptions bits
describing specific options for the toolbar.
See Also: "etbToolbarOptions”

Position etbToolbarLocati | Toolbar position.

on See Also: "etbToolbarLocation”

ParentMenu String The name of the parent menu. This is for

use with sub-menus. Optional.
Return:

Returns an etbErrorValues value.

Method: ToolbarModify

Description: Modifies an existing toolbar.
Object: "Toolbars Object”

Parameters
Parameter Type Description
ToolbarName String The name of the toolbar to change.
Modification etbToolbarModifi How to modify the toolbar.
cation See Also: “etbToolbarModifications” on
page 197

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

104

Return: Returns an etbErrorValues value.

Method: Toolbars

Description: Returns a reference to the Toolbar Interface object. All toolbar
functionality and toolbar interfaces are accessed through this interface.

See Also: "Toolbars Object” on page 18; "The Toolbar Object Interface” on
page 194

Object: "eWebEditPro ActiveX Control Object”

Method: UploadConfirmMsg

Description: Sets the user message displayed on the user intervention dialog.
This dialog is required for security. The user must perform an action before an
upload is allowed.

The message specified is shown to the user. There must be two possible answers
to this message:
® Yes - the upload will proceed

® No - the upload will not proceed

For example, the message can indicate the proposed upload location. The user
can decide if he or she wants to place the file in that location. The user can select
No and, instead, use the server’s external mechanism to select a category or
location.

Object: "Automatic Upload Object”

Parameters
Parameter Type Description
YesNoQuestion String The question asking the user whether or
not they want to proceed with the upload.
Title String The title of the dialog
Example

m_objUpload.UploadConfirmMsg strQuestion, strTitle

Return: None

Method: UseHTMLString

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 105

Description: The information from the given HTML string is extracted and placed
into the appropriate Media object properties. This includes the file name, size,
position, and other values that can be specified in HTML.

Object: "Parameters Object”

Parameter: StrHTML (String) The HTML string to extract values from.
Return: None

See Also: "Validating XML Content” on page 663

Method: XMLProcessor

Description: Retrieves the interface to the XML Object. All advanced XML
functionality is through this object. (Only available with eWebEditPro+XML.)

Object: "eWebEditPro ActiveX Control Object”

Master List of Properties

Property: CmdCaption

Description: Retrieves the caption. If a special button, the caption is a key word.
Object: "ObjectCommand Item Object”

Property: CmdData

Description: If this is a list item, this property sets the current item to the entry
that contains the long data value associated with the text. For a combo-box, it is
either the long value given to the item or the index into the item. For a text box, it
is the length of the string. For a toggle, it is the 1/0 (on/off) state.

Object: "ObjectCommand Item Object”

Property: CmdGray

Description: If set to true, the command is disabled and displayed as a grayed
image. The button does not produce a command when selected by the user. If set
to true, the command is available to the user.

Object: "ObjectCommand Item Object”

Property: Cmdindex

Description: This property only applies to list items. It sets the currently selected
index and retrieves the currently selected index into the list box.

Object: "ObjectCommand Iltem Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 106

Property:

Property:

Property:

Property:

Property:

Property:

Property:

CmdName

Description: This returns the command name associated with the button. If the
command name of a list item is required, use ListCommandName().

Object: "ObjectCommand Item Object”

CmdSorted

Description: Sets or retrieves whether the list box command referenced is a
sorted list.

Object: "ObjectCommand Item Object”

CmdStyler

Description: Reflects the style of the command. The style is assigned when the
command is created.

This is a read-only property.
Object: "ObjectCommand Item Object”

CmdText

Description: Sets the current selection for a list box. It sets the edit text for an
edit box. The text is displayed on the button, no matter what.

Object: "ObjectCommand Item Object”

CmdToggledOn

Description: This property is only available to buttons that are created with the
Toggle style. If the value is true, the button appears pressed in or selected. If
false, it appears popped out or unselected.

Object: "ObjectCommand Item Object”

CmdToolTipText

Description: Contains the tooltiptext associated with a command. You can modify
the tooltip through this property.

Object: "ObjectCommand Item Object”

CmdType As etbCommandStyles

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 107

Description: The command type assigned during the creation of the command.
This is a read-only property.
Object: "ObjectCommand Item Object”

Property: CmdVisible

Description: Reflects the visibility of a command. If true, the user can see the
command. If false, the command is invisible.

Do not use this property to disable buttons. Use the CmdGray property instead.
If the button is made invisible, an empty space replaces the button.
Object: "ObjectCommand Item Object”

Property: MaxListboxWidth

Description: Sets or retrieves the width of an edit box or a list box in characters.
Object: "ObjectCommand Item Object”
See Also: "Working with Schemas” on page 666

If this value is true and the user inserts an element contained within a loaded
schema, all required elements within the inserted element are also inserted.

If the automatically inserted elements have required elements, they are also
inserted. If the inserted elements and any required elements have required
attributes, these are included with the elements with either their default values,
the first value in their value list, or as an empty value.

If this is false, only the selected element is inserted.

Property: ServerName
Description: This property specifies the server to use with the receiving page. It

is not needed if the server is specified with the receiving page in the
TransferMethod property.

objAuto.setProperty(‘'ServerName', strRcvServer);

Object: "Automatic Upload Object”

Property: LoginName

Description: The login name of the user uploading the image. This may
be encrypted in the configuration data.

Object: "Automatic Upload Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 108

Type: String

Property: LoginRequired

Description: Enables or disables the act of logging into a remote site.
This property must be set to True to activate the login name and
password transmission to the server.

Object: "Automatic Upload Object”
Type: Boolean

Property: Password

Description: The password of the user uploading the image. This may
be encrypted in the configuration data.

Object: "Automatic Upload Object”

Type: String

Property: TransferRoot
Description: The same as “Property: DefDestinationDir” on page 112.

Object: "Automatic Upload Object”

Type: String

Property: ValidExtensions

Description: The file extensions of images that can be uploaded, entered as a
comma-delimited string. For example

“gif,tif,jpg”
Object: "Automatic Upload Object”

Type: String

Property: WebRoot

Description: The base location for accessing uploaded images from a Web
page.
For example http://www.ektron.com/images

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 109

Object: "Automatic Upload Object”

Type: String

Property: ContentDescription

Description: Contains the description string that is sent to the server when the
content is posted.

Object: "Automatic Upload Object”

Type: String
Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName].editor_MediaFile() -AutomaticUpload();
objAutoUpload.setProperty(‘'ContentDescription’™, "News Article™);

Property: AllowUpload

Description: Enables or disables automatic upload feature.
Object: "Automatic Upload Object”

Type: boolean

Property: ContentTitle

Description: The title of the content posted to the server. This value is posted
with the content.

Object: "Automatic Upload Object”

Type: String
Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName] .editor_MediaFile() .-AutomaticUpload();
objAutoUpload.setProperty(*‘ContentTitle", "Man Bites Dog");

Property: ContentType

Description: The type of the content posted to the server. Valid types for this
property are the same as the GetContent and SetContent methods.

See Also: "Content Type Categories”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 110

Object: "Automatic Upload Object”

Type: String

Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName] .editor_MediaFile() -AutomaticUpload();

objAutoUpload.setProperty(*'ContentType', "htmlbody');

Property: Port

Description: The port used for the HTTP posting or the FTP transfer. If the
value is 0, the default port for the upload process is used.

Object: "Automatic Upload Object”

Type: Long

Example

var objAutoUpload =
eWebEditPro. instances[g_sEditorName].editor._MediaFile().AutomaticUpload();

objAutoUpload.setProperty(“'port”, 80);

Property: Alignment

Description: The image’s alignment on the page. Possible values are:

left

right

top

middle
bottom
AbsMiddle
AbsBottom

For documentation of the alignment values, please refer to the “Inserting Images”

chapter in the eWebEditPro User Guide.
The user can edit this value in the Picture Properties dialog box.
Object: "Parameters Object”

Type: String

Property: AllowSubDirectories

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

111

Description: Determines whether or not a user can select sub-directories. If
false, the user cannot.

Currently set but not implemented.
Object: "Parameters Object”
Type: Boolean

Property: allowupload

Description: If true, the user can upload files from the local PC to the server. If
false, the user can only insert files that reside on the server.

NOTE It is up to the upload mechanism to use this value. For FTP, if this value is false,
FTP does not let the user upload files. It only lists the available files. The ASP and
ColdFusion samples work the same way. If the value is false, the upload frame is
blank.

Type: Boolean
Object: "Parameters Object”
Example: objEditor.setProperty(""AllowUpload", true);

Property: BaseURL
Description: The base URL value set in the editor. This is a friend property. It
should be set by a routine that knows the base URL.
Type: String
Object: "Parameters Object”

Property: BorderSize
Description: The size of the image’s border in pixels. The user can edit this
value in the Picture Properties dialog box.
Type: Integer
Object: "Parameters Object”

Property: DefDestinationDir
Description: The destination path to where the image will be placed. This is the
same as the TransferRoot.
Type: String
Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 112

Property: DefSourceDir
Description: The initial directory that appears when the user is selecting a local
file.
Type: String
Object: "Parameters Object”

Property: Domain
Description: The domain name of the upload server. This is mainly for use with
FTP, but may also be important for other upload mechanisms.
Type: String
Object: "Parameters Object”

Property: FileSize

Description: The size of the image file in bytes. This value is set when the user
selects a local file.

Type: Long

Object: "Parameters Object”

Property: FileTitle

Description: The title of the file. This is not the file name but a descriptive title
that users assign after selecting the file. It is used as the image’s alt text.

Type: String
Object: "Parameters Object”

Property: FileType

Description: The type of file. These are the choices.

® bitmap
® video
® audio

® document

® other

Type: String

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 113

Property:

Property:

Property:

Property:

Property:

Property:

Object: "Parameters Object”

FWLoginName

Description: User's login name for the firewall. Not currently used.
Type: String
Object: "Parameters Object”

FWPassword

Description: User's password for the firewall. Not currently used.
Type: String
Object: "Parameters Object”

FWPort

Description: The firewall port to use for any transfer. If this value is zero (0), the
transfer mechanism determines the port. Not currently used.

Type: Integer
Object: "Parameters Object”

FWProxyServer

Description: Firewall proxy server. Not currently used.
Type: String
Object: "Parameters Object”

FWUse

Description: If true, a firewall mechanism is used. Not currently used.
Type: Boolean
Object: "Parameters Object”

FWUsePassV

Description: If true, PASV mode FTP is enabled.
Type: Boolean
Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 114

Property: Get ShowResolutionOverride
Description: If set to true or returns true, the user is offered the check box to
manually enable or disable the path resolution mechanism.
Type: Boolean
Object: "Parameters Object”

Property:Get EnablePathResolution

Description: If set to true or returns true, the path resolution functionality is
enabled. If disabled, it is the responsibility of the user or administrator to properly
set the path.

Type: Boolean

Object: "Parameters Object”

Property: Get XferType

Description: Retrieves or sets the transfer type string. A developer can use this
to dynamically change the transfer type. For example, the developer can go from
FTP to loading a Web page through this value.

Type: String
Object: "Parameters Object”

Property: Get IsValid

Description: Returns whether the current upload connection is valid. If there are
problems connecting to the upload location or the connection has not been tried,
this is “false”.

Type: Boolean

Object: "Parameters Object”

Property: HandledInternally
Description: The upload has already been handled internally. If true, the
upload is skipped, and only the notification is done.
Type: Boolean
Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 115

Property: HorizontalSpacing
Description: Horizontal spacing attribute to use in the HTML. The user can edit
this value in the Picture Properties dialog box.
Type: Integer
Object: "Parameters Object”

Property: ImageHeight
Description: The height of the image. This value is set when an image is
selected.
See Also: ShowHeight
Type: Integer
Object: "Parameters Object”

Property: ImageWidth
Description: The width of the image. This value is set when an image is
selected. This is not a rendered size, but the actual size of the image.
See Also: ShowWidth
Type: Integer
Object: "Parameters Object”

Property: IsLocal
Description: Set this to true if a local file will be placed into the
SrcFileLocationName property.
The object processes the path information differently for local files.

If this value is not set, the object resolves the source location to a remote path,
and upload is not possible.

Type: Boolean
Object: "Parameters Object”

Property: LoginName
Description: The login name of the user uploading the image. This may be
encrypted in the configuration data.
Type: String
Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 116

Property: MediaType

Description: This property determines which file extensions are available in the
Media File Selection dialog. It overrides the list of extensions provided in the
configuration data.

This property has three possible values: images, nonimages, or all.
® images allows only the following extensions: gif,jpg,png,jpeg.jif,omp,tif,tiff
® nonimages allows any extension other than images

* all allows all file extensions

Type: String
Object: "Media File Object”

Property: MaxFileSizeK
Description: The maximum size in kilobytes of an image to be uploaded. A
value of zero (0) means no size limit.
Type: Integer
Object: "Parameters Object”

Property: NeedConnection
Description: A read-only property that determines if a connection is necessary
with the current upload method.
Type: Boolean
Object: "Parameters Object”

Property: Password

Description: The password of the user uploading the image. This may be
encrypted in the configuration data.

Type: String

Object: "Parameters Object”

Property: Port

Description: The port to use for uploads. If zero (0), the file’s upload type
determines the port.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 117

Type: Integer
Object: "Parameters Object”

Property: ProxyServer

Description: The name of the proxy server to use with uploads. This property is
not required.

Proxy servers are primarily used with FTP.
Type: String
Object: "Parameters Object”

Property: RemotePathFileName

Description: The remote path and name of the currently selected file. This path
may have been generated using the path parameters when a local file is entered
into SrcFileLocationName.

The application can also set a remote path and name to override the generated
one.

Type: String
Object: "Parameters Object”

Property: ResolveMethod
Description: The method by which the image source path is resolved. The
choices are:
® FULL - fully qualified to server
® HOST - relative to host
® LOCAL - relative to page
® GIVEN - relative to given location - WebRoot
See Also: “Using Local or Given Image Path Resolutions” on page 423
Type: String
Object: "Parameters Object”

Property: ResolvePath

Description: The path used to resolve an image path when GIVEN is the
resolution method. It defaults to the WebRoot, since files are uploaded there.
Type: String

Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 118

Property: ShowHeight

Description: The height attribute of the HTML image tag.

Enter a value here if you want to determine the image’s height, regardless of its
actual size (which is stored in the ImageHeight property).

This value defaults to the ImageHeight property value.

The user can edit this value in the Picture Properties dialog box.
Type: Integer

Object: "Parameters Object”

Property: ShowWidth

Description: The width attribute for the HTML image tag.

Enter a value here if you want to determine the image’s width, regardless of its
actual size (which is stored in the ImageWidth property). This value defaults to the
ImageWidth property value.

The user can edit this value in the Picture Properties dialog box.
Type: Integer
Object: "Parameters Object”

Property: SrcFileLocationName
Description: The full location of the source file. This includes the server, if
applicable, and the path and file name with extension.
Type: String
Object: "Parameters Object”

Property: TransferMethod

Description: The name of the upload method used if the ProvideMediaFile
method is called. The value of this parameter determines what the upload
mechanism should do.

The string can be anything from a key word to a URL. If it is not an internal value,
a script must interpret it. The internal values are FTP and FILE.

For more information on FILE, see “Setting up an Image Repository” on
page 447.

Type: String
Object: "Parameters Object”

Example:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 119

function ReadTransferMethod()

{
var objAutoUpload = GetAutoUploadObject();

return objAutoUpload.getPropertyString("TransferMethod");

Property: TransferRoot

Description: The same as the DefDestinationDir.
Type: String
Object: "Parameters Object”

Property: UsePassV

Description: If true, FTP works in passive mode.
Type: Boolean
Object: "Parameters Object”

Property: ValidConnection
Description: If true, the system has made a valid connection with the current
connection parameters.
Type: Boolean
Object: "Parameters Object”

Property: ValidExtensions
Description: The file extensions of images that can be uploaded, entered as a
comma-delimited string. For example
“gif,tif,jpg”
Type: String
Object: "Parameters Object”

Property: VerticalSpacing

Description: The value of the vertical spacing attribute of the HTML image tag.
The user can edit this value in the Picture Properties dialog box.

Type: Integer

Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 120

Property: WebPathName

Description: The Web accessible name of the specified file. The name is
resolved using the rules assigned to the ResolveMethod value specified.

For example http://www.ektron.com/images/me.gif.
Type: String
Object: "Parameters Object”

Property: WebRoot

Description: The base location for accessing uploaded images from a Web
page.

For example http://www.ektron.com/images.

Type: String

Object: "Parameters Object”

Property: bodyStyle

Object: "eWebEditPro ActiveX Control Object”

Description: Specifies Cascading style sheet (CSS) attribute values, such as
background color, default font style, size, color and more. The bodyStyle
parameter sets any valid CSS style supported by your browser.

Note that this property affects the same values as the style attribute in the body
tag, for example:

<body style="background-color: black; font-size: 24pt">

If both are set, the bodyStyle parameter takes precedence.
Effect of Style Sheet on bodyStyle Parameter

If a style sheet is being referenced by the editor, the style sheet's specifications
override any font styles defined in the bodyStyle parameter except for the BODY
element. So, for example, while you can set the default font using bodyStyle, that
setting will have no effect on text within the <P> tag.

If a style sheet is being used, you have three options for resolving the clash of
style specifications between the bodyStyle parameter and the style sheet.

@ disable the style sheet
@ change the style sheet so that it specifies the desired default font

@ change the style sheet so that it does not specify font attributes for the
content. The style sheet can continue to specify other attributes, such as
page break after, widow/orphan control, and margins

When to Set the Parameter

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 121

This parameter may be set before or after the editor is created. It may also be
changed while the editor is loading, and the change will apply immediately.

Examples

Examples of how to set the body style property appear below.

In ewebeditprodefaults.js

this._bodyStyle = "background-color: black; font-size: 24pt";

JavaScript Parameter Before the Editor is Created
eWebEditPro.parameters._bodyStyle = "background-color: black; font-size: 24pt";

Property: CharSet

Description: Specifies the charset value for a page. For example

<meta content=""text/html; charset=iso0-8859-1">.

This is only needed if saving the entire document.

See Also: "Encoding Special Characters” on page 354 and "Implementing a Web
Site that Uses UTF-8 Encoding” on page 364

Object: "eWebEditPro ActiveX Control Object”

Property: Config

Description: Specifies the URL of the config XML file. Although this ActiveX
control property can contain the XML content, it typically refers to an XML file.
(For details, see “Managing the Configuration Data” on page 251.)

Object: "eWebEditPro ActiveX Control Object”

Property: Disabled

Description: Specifies when set to true, the editor is disabled, that is, content
cannot be edited and all toolbar items are inactive.

You can use this property instead of ReadOnly if you want to make the whole
editor inaccessible to the user. (With the ReadOnly property, the entire toolbar is
not disabled.)

See Also: "Property: ReadOnly” on page 124

This is a boolean type field with a default value of False.

Object: "eWebEditPro ActiveX Control Object”

Examples

There are two ways to get access to the editor property at load time:

® When the editor is created, if you know what the property setting should be,
set it in the parameters object before creating the editor.

See Also: "The Parameters Object” on page 242

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 122

In the examples below, the disabled property starts with a lower case letter.
Properties and methods that are not directly accessed in the editor
[object.editor...] always start with a lower case letter. So, to access the
disabled property through the JavaScript parameters object, begin with a lower
case letter:

[eWebEditPro.parameters.disabled = true]

On the other hand, to access the property through the editor, begin with an upper
case letter:

[eWebEditPro. instances["'myeditor'].editor.Disabled = true

or
object.editor.setProperty(‘'Disabled”, true)]

Here is a complete example.

<script language="JavaScriptl.2">

<l--

if (typeof eWebEditPro == "object™)

{
eWebEditPro.parameters.disabled = true;
eWebEditPro.create(**"MyContentl™, *100%', 400);

}
//-->
</script>

® |f you need an external function to set the editor parameters, use the

oncreate event, which is called just before the editor is created.
<script language="JavaScriptl.2">
<1
ifT (typeof eWebEditPro == "object™)

eWebEditPro.addEventHandler(*'oncreate', "initEditorValues(*MyContentl®)");
eWebEditPro.create(*"MyContentl™, *100%', 400);

}

function initEditorValues(sEditorName)

{

eWebEditPro.parameters.disabled = true;

by
//-->
</script>

If at run time, after the editor is created and operational, you want to disable the
editor, set the disabled property to true. To later enable it, change it to false.

<script language=""JavaScriptl.2">

<l-_

function DisableEditor(sEditorName, bDisabled)

{

eWebEditPro. instances[sEditorName].editor.setProperty(‘'disabled", bDisabled);
¥

//-->

</script>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 123

Property: Get WDDX

Description: Sets or retrieves assigned WDDX data. This is to maintain version
1.8 compatibility.

Object: "eWebEditPro ActiveX Control Object”

Property: hideAboutButton

Description: Set to True to remove the About (G) button from the toolbar.
Object: "eWebEditPro ActiveX Control Object”

Property: IsDirty
Description: This property returns true if the content has changed, false if no
changes were made to content in this editor.
For more information, see "Method: isChanged” on page 75.
Object: "eWebEditPro ActiveX Control Object”

Property: License

Description: The license keys of the editor. Separate each with a comma.

Ektron provides these keys after purchase. For development purposes, the
license keys for 127.0.0.1 and localhost are built into the editor.

NOTE eWebEditPro displays an “Invalid License” message if the license key is
improperly entered.

Object: "eWebEditPro ActiveX Control Object”

Property: Locale

Description: The URL of the localization directory or file. (For details, see
“Modifying the Language of eWebEditPro” on page 201.)

Object: "eWebEditPro ActiveX Control Object”

Property: ReadOnly

Description: see "Property: readOnly” on page 132
Object: "eWebEditPro ActiveX Control Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 124

Property: SrcPath

Description: Where eWebEditPro is installed, that is, the eWebEditProPath. The
configuration data has an environment variable [eWebEditProPath], which is
replaced by the value in srcPath.

Do not change the value of srcPath.
Object: "eWebEditPro ActiveX Control Object”

Property: StyleSheet

Description: Which style sheet file (CSS) to apply to the editor content. If the
entire document is retrieved from the editor, the style sheet is included in the head
section using the link element.

The value of the StyleSheet property is the value of the link tag’s href attribute.
Object: "eWebEditPro ActiveX Control Object”

Examples

® via parameter before the editor is created:
eWebEditPro.parameters.styleSheet = "mystyle.css";

® via ActiveX after the editor is loaded and ready:
eWebEditPro.myEditorl.setProperty(“'StyleSheet”, "mystyle.css");
Both examples produce this line between the document’s head tags:

<link rel="stylesheet" type="text/css" href="mystyle.css">

If only the content within the body tags is retrieved, you need to also apply the
style sheet to the HTML document that displays the content.

If you change the StyleSheet property, the changes are visible immediately.
See Also: “Style Sheets” on page 367

Property: Title

Description: A document title for the page. For example

<head>
<title>Ektron, Inc. - dynamic Web content management - html editor</title>

This is only needed if saving the entire document.
Object: "eWebEditPro ActiveX Control Object”

Property: versioninstalled

Description: Retrieves the version of the control. It is a comma delimited list with
this format:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 125

Major Major, Minor Major, Major Minor, Minor Minor
Or

Version, Point Release, 0, Revision

(The Major Minor value is not used, so it is always 0.)
Object: "eWebEditPro Object”

Syntax

strData = [form!]ewebeditpro5.Version
Remarks

The Major Minor value of 0 is in the format because of the agreed upon format for
software object versions. If comparing versions, the string must be parsed and
each item converted to an integer.

Examples
Displays the control version:

function ShowVersion()

{

alert(testlteml.Version);

}

or

alert(eWebEditPro. instances.MyContentl._editor.version);

or
alert(eWebEditPro. instances.MyContentl.editor.getPropertyString(*'version™));

or
var strVersion = "‘unknown';
ifT (eWebEditPro.versionlnstalled)
{
strVersion = eWebEditPro.versionlnstalled;
3

document._write("'Version of ewebeditpro5.ocx actually installed: " +
strVersion + "
");

Currently only available with IE.

Property: xmlinfo

NoOTE This method is used with eWebEditPro only.

Description: Dynamically assigns XML and custom tag configuration data that is
external to the normal configuration data.

See Also: "The xmlinfo Property” on page 649
Object: "eWebEditPro ActiveX Control Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 126

Property:

Property:

Property:

Property:

Property:

Property:

Property:

border

Description: The border attribute of the popup edit button.
Object: "Image Tag Object”
Type: integer

height

Description: The height attribute of the popup edit button.
Object: "Image Tag Object”
Type: integer

width

Description: The width attribute of the popup edit button.
Object: "Image Tag Object”
Type: integer

Src

Description: The source attribute of the popup edit button.
Object: "Image Tag Object”

alt

Description: The source of the image that appears on the popup edit button.
Object: "Image Tag Object”

Start

Description: Determines the beginning of the HTML that appears on the popup
edit button.

Object: "Button Tag Object”

End

Description: Determines the end of the HTML that appears on the popup edit
button.

Object: "Button Tag Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 127

Property: Type

Description: Determines the form of the popup edit button.
Object: "Button Tag Object”

Property: tagAttributes

Description: Use to assign custom attributes to the popup edit button.
Object: "Button Tag Object”

Property: value

Description: Determines the value of the popup edit button.
Object: "Button Tag Object”

Property: BaseURL

Description: This property sets the current URL of the editor to the specified
location. All references are based on, and relative to, this location. The control
uses this value to find items to display.

This property does not need to be set. If it is not set, the ActiveX control
determines its current location. The property is useful for allowing a script to point
the editor at another location.

IMPORTANT! A trailing slash is required.

Also, if image paths are relative, you must set the xferdir and webroot
attributes of the mediafi les element to match this value. Otherwise, the
transfer and reference directories may not be on the same server, and the current
URL defaults to a full path resolution.

Type: String

Object: "eWebEditPro ActiveX Control Object”

Example

Change to match the setting of the BaseURL in the config.xml data.

<features>
<media%iies>
;t;aasport>
;x%e;dir src=""http://msimg.com/w"/>
<!-- set to new location -->

<webroot src="""/>
<I-- Keep blank so it matches xferdir -->

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 128

</transport>
</mediafiles>
</features>
Example addition in the script that can change this value.
function myOnReady(sEditorName)

eWebEditPro. instances[sEditorName].setProperty(‘'‘BaseURL", "http://msimg.com/w');
}

Property: type
Description: The name of the current event without the “on” prefix. The type is
always lowercase.
Object: "Event Object”
Example:
if (eWebEditPro.event.type == "dblclickelement)
{

}

Property: srcName
Description: The name of the instance of the editor that is the source of the
current event.
Object: "Event Object”
Example:

onDbIClickElementHandler (oElement)
{

// Replace element that was double-clicked with a horz line.

eWebEditPro. instances[eWebEditPro.event.srcName].editor.pasteHTML('<hr>"");
or

eWebeditPro[eWebeditPro.event.srcName].pasteHTML('<hr>");

Property: buttonTag
Description: Object consisting of
® eWebEditProDefaults.buttonTagStart
® eWebEditProDefaults.buttonTagEnd
® eWebEditProMessages.popupButtonCaption

If null, the popup button does not appear.
See Also: "Button Tag Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 129

Object: "Parameters Object”

Property: clientinstall

Description: The directory in which the client installation file
(ewebeditproclient.exe) resides.

Object: "Parameters Object”

Property: cols

Description: The number of columns in the TEXTAREA element if eWebEditPro
is not installed or not supported. If undefined, the number of columns
approximates the width specified when the browser is created.

Object: "Parameters Object”

Property: embedAttributes

Description: Optional attributes to the EMBED tag. Applies only to Netscape.

Object: "Parameters Object”

Property: maxContentSize

Description: The largest number of characters that can be saved in the editor
window. If a user enters content that exceeds this size, an error message
appears.

The maximum size of the content may be increased in some circumstances.
Several factors affect the maximum size allowed.

® Netscape 4 fields are limited to 64K, that is 65535.

® ColdFusion limits the results received from ODBC queries' columns to 64K
for performance reasons. It may be possible to edit ColdFusion’s settings of
your ODBC data source. Refer to your ColdFusion documentation for more
information.

® The Web server may limit the size of form variables (for example, hidden
fields), although typically the size is very large.

® |f using a database, the database field type may be limited in size (for
example, 64K bytes). Check your database documentation.

® |f using ODBC, the ODBC driver on the server may limit the content.
Also, you may want to limit content size as a matter of corporate policy, personal

preference, or to implement quotas where a user has a limited amount of space
allocated.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 130

If none of these restrictions applies to your situation (for example, all users have
Internet Explorer), you can increase the value of maxContentSize in
ewebeditprodefaults.js or set it in JavaScript.

To have no limit, set maxContentSize = 0.

NOTE This parameter checks the number of characters, which may be different from the
number of bytes, depending on the encoding method.

Object: "Parameters Object”

Property: objectAttributes

Description: Optional attributes to the OBJECT tag. Applies only to Internet
Explorer. For example, the OBJECT tag has an attribute 'standby’ that the
developer could set to a string.

objectAttributes="standby="Please wait while the editor initializes."";

Object: "Parameters Object”

Property: path
Description: The path to the eWebEditPro files relative to the hostname. For
example, /ewebeditpro5/.
This value is set in the ewebeditpro.js file.
Object: "Parameters Object”

Property: preferredType
Description: Specifies the type of editor to create. This property has three
possible values:
® textarea - creates a standard HTML textarea field

® section - creates an edit button which, when pressed, displays a popup
window with eWebEditPro

® activex - creates the eWebEditPro editor

If the editor was not installed on the client and the value is set to section or
activex, an Edit button appears on the page. When the user clicks the button, he
is prompted to download eWebEditPro.

Examples:
In ewebeditprodefaults.js: this.preferredType = "textarea';
Or, on the page with the editor before it is created:

eWebEditPro.parameters.preferredType = *textarea';

Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 131

Property: readOnly

Description: Prevents the user from modifying the editor content. This property is
useful when you want the editor to display content that a user should not change.

You can set the parameter before creating the editor in JavaScript, or at run-time
using the JavaScript Instance object or ActiveX property.

eWebEditPro.parameters.readOnly = true;

eWebEditPro. instances[sEditorName].setReadOnly(true);

eWebEditPro. instances[sEditorName].getReadOnly();

eWebEditPro. instances[sEditorName].editor.setProperty(‘'ReadOnly", true);

Property: rows

If you set ReadOnly to true from the client script, the editor content becomes
read-only, and all toolbar buttons become inactive and ignore any API call or user
selection.

Set the ReadOnly property to false to enable editing of the content and the
toolbar buttons.

The ReadOnly property is not available if in Data Design or Data Entry mode. See
Also: "Supporting the Data Designer” on page 601

The readOnly parameter and JavaScript Instance object methods, setReadOnly
and getReadOnly, are compatible with the TEXTAREA field that displays if
eWebEditPro is not supported.

Object: "Parameters Object”

Description: The number of rows in the TEXTAREA element if eWebEditPro is
not installed or not supported.

If undefined, the number of rows approximates the height specified when the
editor is created.

Object: "Parameters Object”

Property: textareaAttributes

Description: Optional attributes to the TEXTAREA tag. Apply only when a
textarea field appears in place of eWebEditPro, typically because the operating
system does not support eWebEditPro.

You can specify the row and column attributes of the textarea field using the rows
and cols parameters. For example, you could use the textareaAttributes property
to specify an onchange attribute value. For example

textareaAttributes = "onchange="mychangehandler()"";

Object: "Parameters Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 132

Property: popup

Description: Lets you pass four parameters to the popup Web page (specified in
popupUrl property).

® url (see “Property: url” on page 135)

® windowName (see “Property: windowName” on page 136)

® windowFeatures (see “Property: windowFeatures” on page 135)

® query (see “Property: query” on page 135)

By default, the popupUrl page is a static HTML page, but it could be a dynamically
generated page. In either case, you may want to pass additional information to the
popup page. For example, you may want to display the number of times the
content has been edited, the title of the content, or anything else.

Here is an example that passes a title and instructions relevant to the content
being edited.

On the page with the popup button:

<script language="JavaScript'>
var sTitle = "Summary Description”;
var slnstr = "Please enter a paragraph summarizing the page.";
with (eWebEditPro.parameters.popup)
{
url = "cif_t0007popup.htm™;
windowName = "'*';
windowFeatures = "location,scrollbars,resizable’;
query ="title=" + escape(sTitle) + "&instr=" +escape(sinstr);

eWebEditPro.createButton(...);
</script>

NoOTE The JavaScript escape () function ensures the text is saved to pass in a URL.
For example, it changes all space characters to %20. The unescape () function
restores the text.

On the popup page:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 133

<script language="JavaScript'>
var objQuery = new Object();
var strQuery = location.search.substring(l);
var aryQuery = strQuery.split(*&™");
var pair = [1;
for (var i = 0; i < aryQuery.length; i++)
{
pair = aryQuery[i].-split('=");
if (pair.length == 2)
{
objQuery[unescape(pair[0])] = unescape(pair[1l]);
}

}

document.writeIn('<p>" + objQuery["title"] + "</p>");
document.writeln(objQuery["instr'] + "
");
</script>

Object: "Parameters Object”

Property: url
Description: Specifies the URL of a Web page to display in a popup window
when an automatic installation is expected.
Example in ewebeditprodefault.js
this.installPopupUrl = this.path + "clientinstall/intro.htm";

See Also:

® “Client Installation Pages” on page 233
Object: "InstallPopup Object”

Property: windowName

Description: Specifies the name of the popup window. Typically, this is left as an
empty string.
Example in ewebeditprodefault.js:

this.instal IPopupWindowName =

Object: "InstallPopup Object”

Property: windowFeatures

Description: Specifies the popup window features as defined for the standard
JavaScript window.open() method. (For more details on the JavaScript
window.open() method, see a JavaScript reference.)

Example in ewebeditprodefault.js

this. instal IPopupWindowFeatures = "height=540,width=680,resizable,scrollbars,status";

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 134

See Also: “Property: windowFeatures” on page 135
Object: "InstallPopup Object”

Property: query

Description: An optional parameter that specifies query string values to pass to
the page specified by the URL parameter. Typically, the query property is left as
an empty string.

If specified, the query string is appended to the URL, separated by a question
mark (?) character. Do not include the ? in the query string value.

Example in ewebeditprodefault.js
this.installPopupQuery = "";

Example in JavaScript
eWebEditPro.parameters.installPopup.query = "firstname=Bob&lastname=Smith";

Object: "InstallPopup Object”

Property: url

Description: The URL to the Web page that contains the editor that appears in
the popup window. The default value is

this.path + "ewebeditpropopup.htm;

Object: "Popup Object”

Property: query

Description: Enter a query to pass parameters to the popup window.

NOTE The popup.query property must not include the question mark (?) character.

Object: "Popup Object”

Property: windowFeatures
Description: The parameters passed to the standard JavaScript
window.open() method.

To enable a feature (for example, scroll bars), include the keyword. To disable a
feature, exclude the keyword. Separate each feature keyword by a comma, but
include no spaces between parameters. A few of the possible features include:

® width=x, where x is the window width in pixels

® height=y, where y is the window height in pixels

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 135

® scrollbars: displays scrollbars

® status: displays the status bar

® resizable: the user can change the window size
® |ocation: displays the location (or address) bar
® menubar: displays the menu bar

® toolbar: displays toolbar buttons

For more details on the JavaScript window.open() method, see a JavaScript
reference.

Object: "Popup Object”

Property: windowName

Description: The name assigned to the popup window created by the standard
JavaScript function window.open().

Object: "Popup Object” and

Property: editor

Description: A reference to the eWebEditPro ActiveX control. For example

eWebEditPro.Editorl.pasteHTML(*'<HR>") is equivalent to
eWebEditPro. instances["Editorl'].editor.pasteHTML("'<HR>"")

Read-only.
Object: "Instances Object”

Property: elemName

Description: The name of the field element that contains the editor content. This
is typically the name specified when creating the editor.

Object: "Instances Object”

Property: formName

Description: The name or index of the form that contains this instance of the
editor.

See Also: “Property: elemName” on page 136
Example:

function myOnEventHandler()
{

var objlInstance = eWebEditPro.instances[eWebEditPro.event.srcName];

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 136

var strContent =
document.forms[objInstance.formName] .elements[objInstance.elemName].value;

}
Object: "Instances Object”

Property: height

Description: The height of the editor assigned when created. Read-only.

Object: "Instances Object”

Property: html

Description: A string containing the HTML. To create the editor in a window other
than the current one, set eWebEditPro.parameters.editorWindow to the name of
the window. For example

<script>

frame2, document, open(0);
eWebEditPro.parameters.editorWindow=""frame2";
eWebEditPro.create(...);

frame2.document.close();
</script>

To prevent the editor from writing the HTML to the window document, set
eWebEditPro.parameters.writeDisabled to true.

For example,

<script>
eWebEditPro.parameters._writeDisabled=""true";
var Obj Editor=eWebEditPro.create(...);

var strHTML=objEditor_html;

</script>

Object: "Instances Object”

Property: id

Description: The name of the eWebEditPro editor element in the object (Internet
Explorer) or embed (Netscape) tag. Typically not used. Read-only.

Object: "Instances Object”

Property: maxContentSize

Description: See "Property: maxContentSize” on page 130
Object: "Instances Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 137

Property: name

Description: The name assigned to this instance of the editor when it was
created. Read-only.

Object: "Instances Object”

Property: readOnly

Description: See "Property: readOnly” on page 132

Object: "Instances Object”

Property: receivedEvent

Description: This boolean value is true if an event has been received from the
ActiveX control.

This property is used internally and is for reference only. It is not necessary for
typical development.

Object: "Instances Object”

Property: status

Description: The status of this editor. (It has the same status value as the
eWebEditPro JavaScript object, but only applies to this instance of the editor). Do
not change.

The status of the eWebEditPro JavaScript object is described in “Property:
status” on page 141.

Object: "Instances Object”

Property: type
Description: Indicates which type of editor was created on a page. Some values
are listed below. You should not set this property -- consider it read-only.
activex - the editor implemented as an ActiveX control was created

textarea - a standard HTML textarea field was created instead of a full-featured
editor

Example:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 138

if (Tactivex" == eWebEditPro.instances[0].-type)

{
}

else if (“"textarea" == eWebEditPro.instances[0].type)

{
}

Object: "Instances Object”

Property: width

Description: The width of the editor assigned when created. Read-only.

Object: "Instances Object”

Property: {editor name}

Description: A reference to an instance of the eWebEditPro ActiveX control.

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576
Object: "eWebEditPro Object”

Property: actionOnUnload

Description: applicable to Internet Explorer only

Value

Description

EWEP_ONUNLOAD
_SAVE (default)

When the Web page is unloaded, the content is saved to
a hidden field on the Web page without prompting. The
content is posted to the server only when the user clicks
a Submit button.

EWEP_ONUNLOAD_
NOSAVE

When the Web page is unloaded, the content is not
saved to a hidden field.

Warning! All changes since the last save are lost. For
example, if the user presses the Back button, content in
standard HTML elements is preserved, but any changes
made in the eWebEditPro editor are lost.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

139

Value Description

EWEP_ONUNLOAD _ When the Web page is unloaded (except for submit), a
PROMPT dialog box prompts the user to click OK to save
changes. (The dialog box text is defined by querySave
in ewebeditpromessages.js).

If the user clicks Cancel, another dialog box prompts
whether to discard the changes or stay on the same
Web page. (The dialog box text is defined by
confirmAway in ewebeditpromessages.js).

Object: "eWebEditPro Object”

Property: instances collection
Description: An array of in-line editor objects of type eWebEditProEditor or
eWebEditProAlt (if the editor could not be created).

This array may be indexed by an integer (0 to instances.length-1) or by the name
of an instance of an editor (for example, instances [“Editor1"]).

The eWebEditPro Editor object has an editor property that provides a reference
to the eWebEditPro ActiveX control. For more information, see “Event Handler
Functions” on page 236.

Object: "eWebEditPro Object”

Property: installPopup

Description: If true, a window with the intro.htm page pops up.
See Also: “Client Installation Pages” on page 233

Return: boolean

Object: "eWebEditPro Object”

Property: isAutolnstallSupported
Description: If true, eWebEditPro can be automatically installed. Currently,
automatic installation is only supported on IE 5.0 or later.

If false, eWebEditPro cannot be automatically installed. The client installation
program is required in install eWebEditPro on the client computer.

Return: boolean
Object: "eWebEditPro Object”

Property: isinstalled

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 140

Description: If true, eWebEditPro is installed (or presumed installed). For
Netscape, this indicates the Esker plug-in was installed. For IE, this indicates the
editor is installed.

If false, eWebEditPro is supported in this environment but needs to be installed
on the client. By default, a message will appear prompting the user to install the
client software.

Return: boolean
Object: "eWebEditPro Object”

Property: isSupported

Description: If true, eWebEditPro is supported in this environment. It may not
be installed yet.

If false, eWebEditPro cannot run in this environment.
Return: boolean
Object: "eWebEditPro Object”

Property: parametersobject

Description: An object of type eWebEditProParameters containing the default
set of parameters used when creating an instance of the editor or button.

To edit the default values set for the parameters, edit the ewebeditprodefaults.js
file.

For more information, see “Parameters Object” on page 7.
Object: "eWebEditPro Object”

Property: status

Description: Reflects the current state of eWebEditPro.
Values:

® EWEP_STATUS_INSTALLED
® EWEP_STATUS_NOTLOADED

® EWEP_STATUS_LOADING

® EWEP_STATUS_LOADED

® EWEP_STATUS_SAVING

® EWEP_STATUS_SAVED

® EWEP_STATUS_NOTSUPPORTED
® EWEP_STATUS_NOTINSTALLED
® EWEP_STATUS_FATALERROR

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 141

® EWEP_STATUS_UNABLETOSAVE
® EWEP_STATUS_SIZEEXCEEDED

® EWEP_STATUS_NOTINSTALLED (The save was canceled because one or more
popup editor windows is open)

® EWEP_STATUS_INVALID See Also: "Saving Invalid Documents” on page 625
Object: "eWebEditPro Object”

Property: upgradeNeeded

Description: If true, An older version eWebEditPro is installed and needs to be
upgraded. Currently only available with IE.

If false, eWebEditPro is either the same or newer version, or could not be
determined.

Return: boolean
Object: "eWebEditPro Object”

Property: Version

Description: The version of the control. It is a comma delimited list with this
format:

Major Major, Minor Major, Major Minor, Minor Minor

Or

Version, Point Release, just 0, Revision

(The Major Minor value is not used, so it is always 0.)
Object: "eWebEditPro ActiveX Control Object”

Syntax: strData = [form!J]ewebeditpro3.Version
Remarks

The Major Minor value of 0 is in the format because of the agreed upon format for
software module versions. If comparing versions, the string must be parsed and
each item converted to an integer.

Examples
Displays the control version:

function ShowVersion()
alert(testlteml_Version);

or
alert(eWebEditPro. instances.MyContentl._editor.version);

or

alert(eWebEditPro. instances.MyContentl.editor.getPropertyString(*'version™));

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 142

Property: editorName

Valid in popup pages opened using eWebEditPro.openDialog(), this property
holds the name of the editor that opened the popup. To access the instance
JavaScript object associated with editorName, use getOpener Instance().

Example

document._write("'The page was opened by editor: " + eWebEditProUtil._editorName);

Object: "eWebEditProUtil Object”

Property: queryArgs

The array of URL query string parameters passed to the page. If the page is used
in a frame, the queryArgs[] array holds the URL parameters of the topmost
window.

Example

var whichFormElement = eWebEditProUtil.queryArgs["formelement™];

Object: "eWebEditProUtil Object”

Property: languageCode

The language code of the browser. If the language is not one of the known
translated languages for the editor's menus and dialogs, this property is an empty
string, that is, “”. The languages for the editor's menus and dialogs are listed

below.
Code Language
ar Arabic
da Danish
de German
es Spanish
fr French
he Hebrew
it Italian

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 143

Code Language

ja Japanese

ko Korean

nl Dutch

pt Portuguese

ru Russian

Y Swedish

zh Chinese (simplified)
zh-tw Chinese (traditional)

Object: "eWebEditProUtil Object”

Property: editorGetMethod

Description: Lets you save either the body only or the entire HTML document
from the editor. You can set this method in ewebeditprodefaults.js by editing this
line:

this._editorGetMethod = "getBodyHTML"; // '"getBodyHTML"™ or 'getDocument"
Or, you can set this method directly in the Web page that calls the editor using the
following JavaScript:

eWebEditPro.parameters.editorGetMethod = "value"

The possible values are getBodyHTML (see “Method: getBodyHTML” on
page 64) and getDocument (see “Method: getDocument” on page 66).

Object: "Parameters Object”

Master List of Events

Event: EditCommandComplete

Occurs when: This event notifies the client application or script that a user edit
command has completed.

Object: "Image Editor Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 144

Parameters

Parameter

Type

Description

CommandName

String

The command that has completed.

Remarks: This is an informational event for a client application, which may want
to keep a log or look for certain commands to trigger certain functions.

Event: EditCommandStart

Occurs when: This event notifies the client application or script that a user edit

command has started.

Object: "Image Editor Object”

Parameters
Parameter Type Description
CommandName String The command that has started.

Remarks: This is an informational event for a client application, which may want
to keep a log or look for certain commands to trigger functions.

Event: EditComplete

Occurs when: This notifies the client application or script that an editing session
has completed.

Object: "Image Editor Object”

Parameters
Parameter Type Description
ImageName String The name of the image.
See Also: "Image Names” on page 521
SaveFileName String The file name to which the image was saved. This

includes the path and file extension.

Remarks: A user may have decided to complete the edit session, or an
application may have closed WeblmageFX.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 145

Event: ImageError

Occurs when: This event notifies a client application or script that an error has

occurred.
Object: "Image Editor Object”
Parameters
Parameter Type Description
ErrorlD Long A numeric value describing the error.
ErrorDesc String A string value describing the error.
ImageName String The name of the image that caused the error.
See Also: "Image Names” on page 521
If a file could not be loaded or downloaded, this
parameter lists the failed file. If the error is due to
an initialization problem, this is an empty string.
Command String The command that was executed and caused the
error. If there was no command, this is an empty
string.

Remarks: See "Method: ErrorDescription” on page 59 to learn how errors are
reported.

Event: Loadinglmage

Occurs when: This event notifies a client application or script that an image file
has loaded.

Object: "Image Editor Object”

Parameters
Parameter Type Description
ImageName String The name of the image.

See Also: "Image Names” on page 521

If the image is new, this is the name under which it
is saved.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 146

Parameter Type Description

SaveFileName String The path and name of the file that contains
changes for the image. If the image is remote, this
is a temporary file name.

OldimageName String If a new image replaces an old image, this is the
old image’s name. If there is no old image, this is
an empty string.

See Also: "Image Names” on page 521

OldSaveName String The name of the image file being replaced.

If the image is a remote image, this is a temporary
file name. If there was no previous image, this is
an empty string.

Remarks: When a user decides to edit a file, this event is called before an image
is replaced or a new image is created. As a result, a client application or script can
extract information about an image that is being replaced.

All functionality, such as producing HTML, works on the old image. The
functionality against the new image is only available after this event completes.

This event is called even when a client application or script calls the EditFile or
EditFromHTML methods.

Event: Savinglmage

Occurs when: Before the current image is saved to the local file system.

Object:"Image Editor Object”

Parameters
Parameter Type Description
ImageName String The name of the image being saved.

See Also: "Image Names” on page 521

SaveFileName

String

The path and file name of the saved image. If the
image is remote, this is a temporary file name.

Remarks: When a file is saved, all changes are referenced in the name of the
saved file. If content or a database is being updated, use the SaveFileName to
reference the file.

The Image Name does not change when it is saved to a secondary file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 147

Event: ondblclickelement

Occurs when: Double-clicking on a hyperlink, applet, object, image, or table. See
the ewebeditproevents.js file for an example of how to respond to this event.

oElement is a reference to the element object. The Variant returned is an HTML
element object suitable for dynamic HTML (DHTML) scripting.

See a DOM reference for complete details on the element object. A few of the
most useful common properties of the element object are listed below. Other
properties are dependent on the type of element.

® tag name - the element’s tag. For example,
oElement.tagName+"oElement.tagName+"";

NOTE The plus sign (+) converts the tag name to a string.

® outerHTML - the entire HTML text of the element including the tag.

Object: "eWebEditPro ActiveX Control Object”

Event: onexeccommand

Occurs when: After a toolbar button is pressed, a drop-down or context menu
(right-click menu) option is selected. This event can also be sent
programmatically.

Object: "eWebEditPro ActiveX Control Object”
Parameters
ByVal strCmdName As String - The command that the user action executes

ByVal strTextData As String - Text associated with the command (typically not
used)

ByVal IData As Long - Numeric data associated with the command (typically not
used)

The IData parameter does not reflect the index of the list box item. Instead, it only
returns the data assigned to the item.

If, in the processing of the command notification, you need the index of the
selected item, use

objCommand.getPropertylnteger(**CmdIndex')

Event: onfocus

Occurs when: The editor gains the focus. onfocus is a standard DHTML event.
Object: "eWebEditPro ActiveX Control Object”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 148

WARNING! This event does not work with Netscape or Firefox.

See Also: http://msdn.microsoft.com/library/default.asp?url=/workshop/author/
dhtml/reference/events.asp

Event: onblur

Occurs when: The editor loses the focus. onblur is a standard DHTML event.
Object: "eWebEditPro ActiveX Control Object”

WARNING! This event does not work with Netscape or Firefox.

See Also: http://msdn.microsoft.com/library/default.asp?url=/workshop/author/
dhtml/reference/events.asp

Event: oncreate

Occurs when: The create method is invoked. If the event function returns false,
the operation is aborted.

Object: "Event Object”
The eWebEditPro.event object properties:

The arguments passed to the create method. You can change the values of these
properties in the oncreate event to alter the values used to create an instance of
the editor.

Refer to the create method for a description of these arguments.

® npame
® width
® height

® parameters

Event: oncreatebutton

Occurs when: The createButton method is invoked. If the event function returns
false, the operation is aborted.

The eWebEditPro.event object properties:
The arguments passed to the createButton method.

You can change the values of these properties in the oncreatebutton event to
alter the values used to create an instance of a popup button to the editor.

Refer to the createButton method for a description of these arguments.

® puttonName

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 149

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/events.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/events.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/events.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference/events.asp

® elementName

® parameters

Object: "Event Object”

Event: onbeforeedit

Occurs when: The onbeforeedit method is invoked. If the event function returns
false, the operation is aborted.

The onbeforeedit method is called when the user clicks the button created by the
createButton method.

The eWebEditPro.event object properties:
The argument passed to the edit method.

You can change the value of this property in the onbeforeedit event to change
which instance of the editor is opened in the popup window.

Refer to the edit method for a description of this argument.
Object: "Event Object” and "eWebEditPro Object”

Event: onedit

Occurs when: After the popup window closes.
The eWebEditPro.event object properties:
Indicate which popup editor just closed.

® elementName - The name of the element that was just edited

® popup - A reference to the popup object

Object: "Event Object” and "eWebEditPro Object”

Event: onbeforeload

Occurs when: The load method is invoked. If the event function returns false, the
operation is aborted.

The eWebEditPro.event object properties:
Undefined
Object: "Event Object”,”Instances Object” and "eWebEditPro Object”

Event: onbeforesave

Occurs when: The save method is invoked. If the event function returns false,
the operation is aborted.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 150

The eWebEditPro.event object properties:
Undefined
Object: "Event Object”,”Instances Object” and "eWebEditPro Object”

Event: ontoolbarreset

See Also: “Method: addEventHandler” on page 43 and “Reacting to the
Initialization of a Toolbar” on page 239

Occurs when: The editor's toolbar is initialized or reset. Previously, you handled
the toolbarreset command in the eWebEd i tProExecCommand() event handler

function. Although that method still works, the preferred method is to add an event
handler For example:

eWebEditPro.addEventHandler(“'ontoolbarreset', '"loadStyleSheet(this.event.srcName)');
eWebEditPro.create(*"MyContentl™, *100%', 400);

Object: "Event Object”

Event: onsave

Occurs when: The save method is complete. If the event function returns a
boolean value (true or false), the save method returns the value.

A false value can be used to cancel leaving the page in some browsers. The save
method is called when the page is unloaded, that is, in the document's
onbeforeunload (IE only) or the onunload event, and also on the onsubmit event.

Note that the onsubmit event is not fired when the form's submit method is called.
It only occurs when the user clicks the submit button.

If you are manually calling the submit method, also call the eWebEditPro.save
method. The save method is not called on the onunload event if the
window.eWebEditProUnloadHandled property is set true prior to calling the create
method.

You can also prevent eWebEditPro from copying content to the hidden field when
the onsubmit event fires. To do this, set the

document.yourFormsName .eWebEditProSubmitHandled property to true
prior to calling the create method.

The eWebEditPro.event object properties:
Undefined
Object: "Event Object”,"Instances Object” and "eWebEditPro Object”

Event: onload

Occurs when: The load method is complete.

The load method is called when the page is loaded, that is, in the document's
onload event. The load method is not called if the

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 151

window.eWebEditProLoadHandled property is set to true prior to calling the
create method.

Object: "Event Object”,”Instances Object” and "eWebEditPro Object”
The eWebEditPro.event object properties:
Undefined

Event: onready

Occurs when: It is safe to send commands or access the Media File Object.

NOTE The preferred way to set an onready event handler is:
eWebEditPro.addEventHandler("'onready', your_event_handler);.
For more information, see “Method: addEventHandler” on page 43.

For example

eWebEditPro.onready = "initTransferMethod(eWebEditPro.event.srcName)";

function initTransferMethod(strEditorName)

{
}

eWebEditPro[strEditorName] .MediaFile().setProperty("TransferMethod", "mediamanager.asp');

Object: "Event Object” and "eWebEditPro Object”
The eWebEditPro.event object properties:
® type - Ready

® srcName - The name of the instance of the editor that is the source of the
current event.

Event: onerror

Occurs when: An error occurs because the save method failed. Inspect the
status property to determine the cause of the error. See Also: "Property: status” on
page 141

Object: "Event Object”,”Instances Object” and "eWebEditPro Object”
The eWebEditPro.event object properties:

Provide information about the source and cause of the error.

® source - The method that caused the error. For example, “load” if the load
method failed.

® name - The name of the editor, where name is the argument passed to the
create method.

® instance - A reference to the instance object.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 152

eWebEditPro.onready =

Event: eWebEditProReady

Occurs when: It is safe to send commands or access the Media File Object.
Object: "ewebeditproevents Object”
The eWebEditPro.event object properties:

® type = “ready”

® srcName = name of the editor that is ready

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.
Example

"initTransferMethod(eWebEditPro.event.srcName)";

function initTransferMethod(strEditorName)

{
}

eWebEditPro[strEditorName] .MediaFile().setProperty("TransferMethod", "mediamanager.asp');

Event: eWebEditProExecCommand

NOTE

Ektron recommends using the eWebEditProExecCommandHandlers array
instead of this function. See "The eWebEditProExecCommandHandlers Array” on
page 237.

Occurs when: After an internal command is executed, or when an external
command should be executed. That is, when a toolbar button is pressed or a
command is selected, such as on the context menu or dropdown list on the
toolbar.

Writing the function eWebEditProExecCommand is the preferred way to add
custom commands, rather than modifying onExecCommandDeferred or
onExecCommandHandler in ewebeditproevents.js.

Return true to allow the default external commands to run.

Return false to prevent default external commands from running.
Internally handled commands are executed prior to this event’s firing.
Object: "ewebeditproevents Object”

The eWebEditPro.event object properties:

sEditorName - the name of the version of eWebEditPro whose command was
executed (for example, “MyContent1”).

To access the eWebEditPro methods, use
eWebEditPro. instances[sEditorName].editor.

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.
strCmdName - a string containing the command, for example, “conduct”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 153

strTextData - a string that may contain text data related to the command.
Typically not used.

|IData - a long integer value that may contain numeric data related to the
command. Typically not used. The IData parameter does not reflect the index of
the list box item. Instead, it only returns the data assigned to the item.

If, in the processing of the command notification, you need to retrieve the index of
the selected item, use

objCommand.getPropertylnteger('CmdIndex™).

Event: eWebEditProMediaSelection

Occurs when: You want to add your own media file handler. This event occurs
when the picture button is pressed.

Object: "ewebeditproevents Object”
The eWebEditPro.event object properties:

(sEditorName) sEditorName is the name of the eWebEditPro editor whose
command was executed.

To access eWebEditPro methods, use
eWebEditPro. instances[sEditorName].editor.

See Also: "The ewebeditpromedia File”

Event: eWebEditProMediaNotification

Occurs when:
Object: "ewebeditproevents Object”
The eWebEditPro.event object properties:

Event: eWebEditProDblIClickElement

Occurs when: A user double-clicks a hyperlink, applet, object, image or table
within the editor, unless a specific event handler for hyperlink, image or table is
defined.

To add a double-click element handler, define a JavaScript function in your Web
page to run as shown below.

eWebEditProDbIClickElement(oElement)
{

return true or false

}

The eWebEditProDblClickElement function runs when certain elements are
double-clicked. It may be easier, however, to define the applicable handler
function for a specific object. The hyperlink, image, and table element objects
have their own functions that run when they are double-clicked.

The default event handlers are defined in the ewebeditproevents.js file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 154

Object: "ewebeditproevents Object”
The eWebEditPro.event object properties:
(oElement)

oElement is a reference to the HTML element that was double-clicked. Return
® true to allow the default external commands to run
® false to prevent them from running

Note that internally handled commands will have been executed prior to this event
firing.

Event: eWebEditProDblClickHyperlink

Occurs when: A user double-clicks a hyperlink. The default hyperlink event
handler is defined in the ewebeditproevents.js file.

Object: "ewebeditproevents Object”
The eWebEditPro.event object properties:
(oElement)

oElement is a reference to the HTML element that was double-clicked. Return
® true to allow the default external commands to run

® false to prevent them from running

Note that internally handled commands will have been executed prior to this event
firing.

Event: eWebEditProDblClicklmage

Occurs when: A user double-clicks an image.

Object: "ewebeditproevents Object”

The eWebEditPro.event object properties:

(oElement)

oElement is a reference to the HTML element that was double-clicked. Return
® true to allow the default external commands to run

* false to prevent them from running

Note that internally handled commands will have been executed prior to this event
firing.

Event: eWebEditProDblClickTable

Occurs when: a user double-clicks a table.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 155

Object: "ewebeditproevents Object”

The eWebEditPro.event object properties:

(oElement)

oElement is a reference to the HTML element that was double-clicked. Return

® true to allow the default external commands to run

® false to prevent them from running

Note that internally handled commands will have been executed prior to this event
firing.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 156

Commands

Commands define standard editor actions, such as changing the editor from
WYSIWYG to Source View mode.

eWebEditPro provides two types of commands:

® Commands executed when a user clicks a toolbar button or menu option.

Each eWebEditPro feature has several user-executed commands. For
example, the standard feature contains basic editing commands, such as
cutting and pasting text.

® Commands that execute programmatically using JavaScript. For
example, you want the editor to load in HTML view mode, rather than
WYSIWYG. In this case, you add to the page that hosts the editor the
command cmdviewashtml, which executes when the editor loads.

Programmatically-executed commands are explained in "Using
JavaScript to Send Commands” on page 197.

Whether commands are initiated by a user or a script, there are two kinds of
commands, standard and custom. See "Sources of Commands” on page 158.

How Commands are Processed

As shown in the illustration below, commands can be initiated from the toolbar
or from a script. In both cases, the command is passed to the editor then to
the JavaScript, which executes the action.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 157

Commands from toolbar

=commatd hname="-mysubnit=" < fconmard=

JavaScript commands

ellebhEditPro.instances[sEditorName] .
editor. ExecConmand { "mwysubnic", "", 0);

(registerac with

eWabEditFroExecCommancdHandiors)

+

—

Commands

eWebEditPro

JavaSecript

Action

See Also: "Using JavaScript to Send Commands” on page 197

Sources of Commands

Regardless of what triggers a command, they have two sources.

Command Description For more information, see

source

Standard Supplied with ewebEditPro "Standard Commands” on page 199

Custom You create them to extend the standard "Custom Commands” on page 215
capabilities

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 158

Using eWebEditPro

Design and Implementation
Guidelines

System Requirements

Browser for Editing | e Microsoft Internet Explorer,
version 4.01 or higher

® Netscape Navigator, version
4.7x (with 1E 4.01 or higher
installed)

® Netscape 6 (with IE 4.01 or
higher installed)

Browsers must run under Microsoft
Windows 95, 98, NT, 2000 or later.

Browser for Viewing | @ Microsoft Internet Explorer,
version 3.0 or higher

® Netscape Navigator, version
3.0 or higher

® Netscape 6

® Opera
or any other browser

Dynamic Web Server | Based on the system requirements
of the dynamic application server
and/or web server you are using.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 159

Design and Implementation Guidelines

Server Operating System | @ Wwindows NT Server, Windows
2000 Server

® Windows 98, ME, 2000, XP
with PWS

® Sun Solaris
® Linux

* HP-UX

Client Hardware | Any IBM-PC compatible system.

Suggested minimum requirement:
IBM compatible Pentium 166 with
64 Mb RAM.

Maximum Size of Content

See "Property: maxContentSize” on page 130.

Placing More Than One Editor on a Page

Samples

You can easily place several editors on one Web page. To see an
example of this, see the test drive on our Web site at http://
www.ektron.com/ewebeditpro5/testdrive/multiedit.htm.

Ektron also provides sample code that shows how to put two
editors on a Web page. The sample files reside in the folder to
which yOLlinSta”eCieWebEditPro\samples\your server platform\
multiedit.xxx (XXX IS the server extension, such as, asp, cfm, jsp).

For example,

C:\Inetpub\wwwroot\ewebeditpro5\samples\asp\multiedit.asp.

Memory Considerations

If you place more than one editor on a page, make sure that
adequate memory resources are available. Windows '95 and '98
are not extremely reliable for memory. Windows 2000 is better able
to manage the space needed to run several editors at once.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 160

http://www.ektron.com/ewebeditpro2/testdrive/multiedit.htm
http://www.ektron.com/ewebeditpro2/testdrive/multiedit.htm

Design and Implementation Guidelines

Recommendations
Ektron suggests running no more than 5 editors per page.

To place more than 5 editors on a page, we recommend using a
popup button that opens one editor at a time. Alternatively, you
could group them with a "next" key to bring up the next batch.

NOTE There is no known limit to the number of popup editors.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 161

eWebEditPro Dataflow

This section describes how content flows from a database or file system on a
Web server into the eWebEditPro editor and then back to a Web server.

Integrating eWebEditPro into a Web Page

The eWebEditPro editor is a browser plug-in. It does not directly connect to a
Web server or database. It may be used with any dynamic Web server and
any database or no database at all.

eWebEditPro includes JavaScript that facilitates integration into a Web page.
Most of the details of moving the content are handled for you.

The eWebEditPro editor replaces a standard HTML textarea field. The
editor's content is stored in a standard HTML hidden text field. This means
processing on the server-side is standard. In fact, if your Web application
currently uses a textarea field that permits HTML tags, there is very little to
change on the server-side--typically just a few lines of code to create the
eWebEditPro plug-in instead of a textarea field.

Integration files are provided for many platforms, including ASP, JSP, and
many more. See the "Integrating eWebEditPro” on page 533 for a complete
list. If your platform language is not included, you can still easily integrate
eWebEditPro in a Web page using HTML and JavaScript. Many HTML
samples are included.

See Also: "Integrating eWebEditPro Using JavaScript” on page 564

Content Flow Diagram

The illustration below shows how content flows from the Web server to the
editor and then back to the server. Text following the illustration explains it in
more detail.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 162

eWebEditPro Dataflow

database or file system

action page — edit page
web server eWebEditProEditor ("MyContentl”,
HEE* "r "zzl:lﬂr
"spxHello</p=")
e — <input type="hidden"
Ll L —— name="MyContent 1"
m: wvalue="glt;pegt:;Helloglo: fp&egt; ™=
Swimet: [Eooren el o arosvmr ghegn smor ‘@
e T
[wons ok b el ey gl i HTHL Faeraai! B e
IREAAS o~ Tw ARR -@R (EINERESAE
jlw;w | T | T s msm, 5| 0 1| | e ThE R, e Dnll:lad
Hele = ‘
T
=l
i i .
] [Y S e G . onsubmit

eWebEditPro browser plug-in

1. The Edit Page: Read Content

The Web page that hosts the editor reads the initial content from a database or a
static file on the server. If a new content block or email message is being created,
the initial content is an empty string.

You, as the developer, need to create this page (or use one of the samples

provided). The editor plug-in is placed in a Web page by including the
eWebEditPro integration file for your platform and calling a function or custom tag

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 163

eWebEditPro Dataflow

(depending on your language). The initial content (or empty string) is passed to
the function or custom tag.

Language Example
ASP <% =eWebEditProEditor("'MyContentl™, "95%", "'220", "<p>Hello</p>'"") %>
ASP.NET <ewep:eWebEditProEditor id="MyContentl" runat="server" width=
"95%""height="220" Text="'<p>Hello</p>'"></ewep:eWebEditProEditor>
ColdFusion <CF_ewebeditpro5 Name=""MyContentl" Width="95%" Height="220"
Value="<p>Hel lo</p>">
JSP <%= eWebEditProEditor(MyContentl™, *95%', *220", "<p>Hello</p>") %>
Perl ewebeditpro: :eWebEditProEditor(‘'"MyContentl™, *95%", *220", "<p>Hello</p>");
PHP <?php echo eWebEditProEditor("MyContentl™, ""95%", ''220", "<p>Hello</p>") ?>
HTML and <input type=hidden name="MyContentl" value="<p>Hello</p>">
JavaScript <script language=""JavaScriptl.2">
<l-- eWebEditPro.create("'Description™, "95%", *220'); //--></script>

For more information, see "Integrating eWebEditPro” on page 533.

2. The Hidden Field

This step is done for you by the eWebEditPro function or custom tag (unless you
are just using HTML/JavaScript). The hidden field is a standard HTML hidden text
field: <input type=""hidden". The hidden field must be placed within a
standard HTML form. This is how the content is posted back to the server. The
eWebEditPro plug-in does not need to directly connect to the Web server to read
or write the content.

The hidden field has the same name you assigned when creating the editor.

Note that, at this point, the content has been HTML encoded. For example, the “<*
character is converted to < and double quotes () are converted to ". The
eWebEditPro function or custom tag performs this task for you.

3. The onload Event

This step is done for you by the eWebEditPro JavaScript integration code. When
the page's onload event fires in the client browser, the eWebEditPro JavaScript
integration code copies the content from the hidden field into the editor.

4. The onsubmit Event

This step is done for you by the eWebEditPro JavaScript integration code. After a
user modifies the content, he or she presses the submit button. When the
onsubmit event fires in the client browser, the eWebEditPro JavaScript
integration code copies the content from the editor to the hidden field.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 164

eWebEditPro Dataflow

5. The Action Page: Write Content

When a user presses the submit button, all HTML form field values are posted to
the Web server, including the hidden field. The action page, which you as a
developer write, processes the form field values.

Typically, in a content management application, the values are stored in a
database. In an email application, an email message is sent.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 165

Defining the Toolbar

When you look at eWebEditPro, you see a box with one or more rows of buttons
across the top, known as the toolbar. The following illustrates a section of the
eWebEditPro toolbar.

[4BBAG| o | Aol - IE

JJ 2 [Apply Style] = Maormal * Times Mew Roman, ™ =

When you first load eWebEditPro, the default toolbar appears. You can
determine which items appear on the toolbar, and what happens when a user
selects an item by modifying the configuration data.

Modifying Configuration Data

NOTE

Toolbar Menus

There are two ways that you can modify configuration data:
® dynamically, using JavaScript on the server, on the client, or both.

* statically, by editing an .xml file that stores the configuration data. The file’s
name is config.xml and, by default, is installed in the ewebeditpro5
directory.

If you use an XML editor to edit config.xml, Ektron supplies a corresponding
schema file (config.xsd) that can validate config.xml. By default, the config.xsd is
installed to the ewebed i tpro5 directory. Note that some validators might find
errors when validating config.xml against config.xsd because some attributes
have no value by default.

This section explains how to modify the toolbar and enact changes by editing the
config.xml file. “Dynamically Changing the Editor” on page 186 explains how to
change the toolbar using a script.

The toolbar includes one or more toolbar menus. Each menu consists of one or
more toolbar buttons or dropdown lists (illustrated below).

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 166

Defining the Toolbar

BRRMG o Yo M

Ll orrnal * Timez Mew Roman, ~ =

M ormal

Here are key points about toolbar menus.

® Atoolbar menu can reside on the same row with another menu. It can also
continue to the next row if it cannot fit on a single row.

® Double vertical bars indicate the beginning of a new toolbar menu, as

r g|m

illustrated —

TS
amm
11
(Tt}

® You can place all available items on a single toolbar menu. However, it's
probably more efficient to create a few menus that provide a related set of
functions, and activate those menus in the configuration data assigned to a
user group.

Defining the eWebEditPro Toolbar

There are two major aspects to defining the eWebEditPro toolbar. You can define

® which toolbar menus appear on the toolbar, and the sequence in which they
appear
® characteristics of each button and dropdown list

You can also create a popup menu that appears when the user presses a button.
Finally, you can create custom commands as well add JavaScript that executes
after a standard command is performed.

The following sections explain these procedures.

WARNING! If you change the interface section of the configuration data, the user will not see
the change if he or she has customized. For testing, to ensure that your changes
appear, set the al lowCustomize attribute of the interface element to false or
change the name attribute of the interface element to a name not previously used.
See Also: “Letting Users Customize the Toolbar” on page 254.

Determining Which Menus Appear on the Toolbar
When defining toolbar menus, you can perform the following tasks.

® Find a toolbar menu’s internal name

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 167

Defining the Toolbar

® Add a custom toolbar menu
® Remove a toolbar menu
® Remove all toolbar menus

® Determine whether a toolbar menu can reside on a row with another menu or
must appear on its own row

® |f atoolbar menu does not fit on one row, determine if it should wrap around
to the next row

® Create or edit the toolbar menu caption

NOTE If you want to add to or modify the buttons on a toolbar menu, see "Determining
Which Buttons and Dropdown Lists Appear on a Menu” on page 173.

Finding a Toolbar Menu’s Internal Name

Many procedures in this section require you to identify a toolbar menu’s internal
name. If you do not know a menu’s internal name, follow these steps to learn it.

1. Countthe number of the toolbar menu. Begin your count at the top left corner.
(Remember that toolbar menus begin with double vertical bars.)

r v |[f=E

o

ki

g—
For example, in the following illustration, the numbers button (=) is part of
the third toolbar menu.

1 e

(Dae BREAS o Ve ARG - l-mﬂa = @ = f’ﬂDOEE =i =
J [Apply Style) = Maomal * Times New Roman, "= 312 pt) - é@| B lnbsp @ & Th
= e =l =] == r = e

2. Open the config.xml file and look for the first line that begins with <menu
name (illustrated below in red).
<?xml version="1.0"?>
<config product="eWebEditPro">
<!-- Valid positive values are: yes, true, 1 -->
<!-- Valid negative values are: no, false, 0 -->
<interface name="standard" allowCustomize="false'">
<menu name="‘editbar'>

This line is near the top of the file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 168

Defining the Toolbar

3. Within config.xml, all toolbar menus are indented the same distance from the
left margin. Scroll down the list of menus until you see the menu that you
identified in Step 1.

@="Editbir" nembo="false" shombnrt.

first menu rreEdie
It -

< DUICT0N Cofmmdna- chdoopy® -
<hutton command="cmdpaste" S -
<Iatton command="cmdfind” S -
<hutton command="cmdpring” S -
<barf -

<Iaatton command=" crdumdat f -
<Intton command="cmdreda” S -
<barf -

<button command="cmdspellcheck” s
<hitton command="cmdspellaywt” -
<barf -

<Iautton command="cmdbockmark” S -
<hutton command="cmdbyperlink” S -
<Iuatton coromand="crodanl irde" S -
<barf -

<Iatton covmand="cmdhs) -

<Iatton coomand="crdmianedia" s -
<button command="cmdtable” popup="tableg

< e
"wirmashar" newRon="false" showEan
bt
second menu dborders"S >
mLuLem) Lonedia- cusaeeadetail =S
<barf -

<hitton command=" crodwei e sonrsionrg ™ F-
<Iatton command=" cridei ema sl S -
<button command="cmdviewdsproperties"y >-|
<Iuatton coomand=" crdmsword”) >

< fmerna-
& e="pformatbar” newBow="false" showk
i fr123 A
third menu b andgh

4. Now that you have identified the toolbar menu, you can add buttons to it or
remove buttons from it.

Each task is described below.

Creating a Custom Toolbar Menu

You can create a custom toolbar menu and place any set of button commands on
it.

While you can type in a toolbar menu definition, it is quicker to copy and edit one.

1. Find the interface section of the XML configuration file.
<?xml version="1.0"?>
<config product="eWebEditPro">

<!-- Valid positive values are: yes, true, 1 -->
<!-- Valid negative values are: no, false, 0 -->
<interface>

2. Copy any toolbar menu definition (the text between the menu tags, <menu
and </menu>).

Here is a typical toolbar menu definition.

<menu name="viewasbar' newRow="false" showButtonsCaptions="false" wrap="false">
<caption localeRef="mnuViewAs"/>
<button command="cmdshowborders"/>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 169

Defining the Toolbar

<button command="‘cmdshowdetails"/>

<bar/>

<button command="‘cmdviewaswysiwyg'/>
<button command="‘cmdviewashtml'/>
<button command="‘cmdviewasproperties'/>
<button command="‘cmdmsword"/>

</menu>

8.

Move to the line in the config.xml file where you want the new menu to
appear.

For example, if you want the custom menu to appear after the second
standard menu, move to the line in config.xml following the description of the
second standard menu.

Paste the menu definition you copied in Step 2.

Edit the toolbar menu’s name and other attributes as appropriate. (Menu
attributes are explained in “menu” on page 288.)

Remove buttons that should not be available (see “Removing a Toolbar
Button or Dropdown List” on page 176).

Add new buttons as desired (see “Adding a Toolbar Button” on page 173 and
"Adding a Toolbar Button” on page 173).

Users will see the new toolbar menu the next time they sign on.

Removing a Toolbar Menu
To remove a toolbar menu from the eWebEditPro toolbar, follow these steps.

NoOTE “Overview of Configuration Data” on page 258 explains how to edit the XML
configuration file.

Identify the toolbar menu that you want to remove (see "Finding a Toolbar
Menu’s Internal Name” on page 168.)

Within the definition of that toolbar menu, set the enabled attribute to
false. Here is an example. (The text appears in red for illustration purposes

only.)

<menu name="‘editbar" enabled="false" newRow=""false"

showButtonsCaptions="false"
wrap="false'> <caption localeRef="btnMainCap'>Edit</caption>
<button command="‘cmdcut'/>
<button command="‘cmdcopy"'/>
<button command="‘cmdpaste'/>
<button command="cmdfind"/>
<bar/>

</menu>

3.

Users will not see the toolbar menu the next time they sign on.

Removing All Toolbars
To remove all toolbars from the eWebEditPro editor, follow this step.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 170

Defining the Toolbar

1. Within the interface section of the configuration data, set the visible
attribute to “false”.

If the attribute does not appear, add it. Here is an example.
<interface name="standard" allowCustomize="false" visible ="false'">

For more information, see “visible” on page 284.

Placing a Toolbar Menu on a Row with Another Menu

A menu’s newrow attribute determines whether or not it can reside on the same
row with another toolbar menu.

If the attribute is set to "false", the toolbar menu resides on the same row with

=R E
A B I U A Z N2

another menu. -

If "true", a toolbar menu goes to the beginning of the next row.
J%Eﬂ|ﬂﬁ|":}’m|ﬁ%$|_|
mpeam; ~| Ho BB

The default value for this attribute is "true".

To change the newrow attribute, follow these steps.

1. Find the interface section of the XML configuration file.

<?xml version="1.0"?>

<config product="eWebEditPro">
<I-- Valid positive values are: yes, true, 1 -->
<I-- Valid negative values are: no, false, 0 -->
<interface

2. Within the interface section, move to the definition of the toolbar menu that
you want to modify. (See "Finding a Toolbar Menu’s Internal Name” on
page 168.)

3. Change the value of the newrow attribute. For example, assume that you
want a toolbar menu to reside on the same row with the preceding menu.
That section of the config.xml file would look like this.
<menu name="‘editbar" newRow="false” showButtonsCaptions="false" wrap="false">

4. Users will see the new toolbar menu arrangement the next time they sign on.

Determining if a Toolbar Menu Should Wrap to the Next Row

A toolbar menu’s wrap attribute determines what happens when a menu’s toolbar
buttons extend beyond the right edge of the menu row.

If the attribute is set to "true", when the icons reach the right edge of the display
area, they wrap to the next row.

If "false", the icons do not wrap to the next row. They are invisible until you move
the toolbar menu bar to another row or drag it from the toolbar.

The default value for this attribute is "true".

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 171

Defining the Toolbar

To change the wrap attribute, follow these steps.

1. Find the interface section of the XML configuration file.

<?xml version="1.0"?>

<config product="eWebEditPro">
<I-- Valid positive values are: yes, true, 1 -->
<!-- Valid negative values are: no, false, 0 -->
<interface

2. Within the interface section, move to the toolbar menu that you want to
modify. (See "Finding a Toolbar Menu'’s Internal Name” on page 168.)

3. Change the value of the wrap attribute.

For example, if you change a toolbar menu’s wrap attribute to "true”, the line
in config.xml looks like this:

<menu name="‘editbar" newRow="false" showButtonsCaptions="false" wrap=""true'>
4. Users will see the new toolbar menu arrangement the next time they sign on.

Creating or Editing the Toolbar Menu Caption

A toolbar menu caption only appears when the user drags the menu away from

lEdie |
% Bn @ d

In this example, "Edit" is the menu caption.

the toolbar.

<menu>

<caption localeRef="mnueditcap">Edit</caption>
</menu>

To change the toolbar menu caption, follow these steps.

1. Find the interface section of the XML configuration file.

<?xml version="1.0"7?>

<config product="eWebEditPro">
<I-- Valid positive values are: yes, true, 1 -->
<I-- Valid negative values are: no, false, 0 -->
<interface

2. Within the interface section, move to the toolbar menu whose caption you
want to modify. (See "Finding a Toolbar Menu’s Internal Name” on page 168.)

3. Find the section of the toolbar menu definition that begins with caption
localeReT (indicated in red below).

<menu name="‘pformatbar’™ newRow="false'" showButtonsCaptions="false" wrap="false">
<caption localeRef="mnuPFmt"/>

In this example, the locale code is mnuPFmt.
4. Close the XML configuration file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 172

Defining the Toolbar

5. Open the localization file for the language of the editor. (By default,
localization files reside in the ewebeditpro5 folder.) For example, if the editor
language is English, open locale0409b.xml.

(For more information on localization files, see "Locale Files” on page 202.)

6. Within the localization file, find the locale code identified in Step 3. To
continue the example in that step, you would find mnuPFmt.

7. Edit the text between the locale code tags. For example, change
<mnuPFmt>Paragraph Format</mnuPFmt> to
<mnuPFmt>Format</mnuPFmt>.

8. Users will see the new toolbar menu caption the next time they sign on.

Determining Which Buttons and Dropdown Lists Appear on a
Menu

This section explains how to define the items that make up each toolbar menu.
Menus are made up of toolbar buttons and dropdown lists. You can define the
contents of toolbar menus in the following ways.

® Add a new toolbar button

® Add a new dropdown list

® Remove a toolbar button/dropdown list

® Rearrange the buttons/dropdown lists on a toolbar menu
® Add a space between two toolbar menu items

® Add a separator bar between two toolbar menu items

® Change the image that appears on a toolbar button

® Display or suppress button caption text

— If you display caption text, you can define the alignment of the text on the
button

Translate button captions and tool tips to a foreign language

Adding a Toolbar Button

As explained in “button” on page 272, buttons or dropdown lists execute
commands. Standard and custom commands are defined in the features section
of the configuration data. (See “Commands” on page 157 for more details.)

To add a new button to a toolbar menu, follow these steps.

NOTE Whether the button appears as a square with an icon or a dropdown list is
determined in the command’s sty le attribute, not when you create the button.
For more information, see "Command Styles” on page 277.

1. Find the interface section of the XML configuration file.
<?xml version="1.0"7?>
<config product="eWebEditPro" >

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 173

Defining the Toolbar

<I-- Valid positive values are: yes, true, 1 -->
<I-- Valid negative values are: no, false, 0 -->
<interface

Within the interface section, move to the toolbar menu that you want to
modify. (See "Finding a Toolbar Menu'’s Internal Name” on page 168.)

Move to the line within the menu tags where you want to add the new item.
Buttons and dropdown lists appear on a toolbar in the sequence in which
they are listed in the menu definition.

Enter the syntax to identify the new item. Typically, this syntax is <button
command=""command name"'/>. (The syntax for the button element is
described in “button” on page 272.)

For example, if a toolbar menu definition has three buttons, cut, copy and
paste, and you want to add a find button following paste, move to the line
following paste and add the find button command, as illustrated below (red
indicates text that you insert).

<menu name="‘editbar" newRow="false" showButtonsCaptions="false" wrap="true'>
<caption localeRef="btnMainCap">Edit</caption>
<button command="‘cmdcut'/>
<button command="‘cmdcopy"' />
<button command="‘cmdpaste'/>
<button command="cmdfind"/>

</menu>

A list of standard commands is provided in “List of Standard Commands” on
page 199. To learn how to create a custom command that can be added to
the toolbar menu, see "Custom Commands” on page 215.

Users will see the new toolbar menu arrangement the next time they sign on.

Adding a Dropdown List

To add a new dropdown list to a toolbar menu, follow these steps.

This procedure uses an example dropdown list with three options that the user
can insert into the content.

Dropdown list

Executes this Inserts this text string

option custom command

company name Jsconame Widgets, Inc.

address Jjscoaddress 1 Main Street, New York, New York
telephone number jstcotelnum 1-800-111-2222

Go to the features > external section of the configuration data.

On a new line, enter <command name="commandname™ style=""list">.
Replace commandname with a unique name for the list. For this example,
enter companyinfo.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 174

Defining the Toolbar

3. Enter <selections name="selectionlist>. Replace selection list
with a unique name for the selection list. For this example, enter
myselectionlist.

4. For each item on the dropdown list that executes a command, enter
<listchoice command=""command name''>caption</listchoice>.
For example, to add to a dropdown list a custom command that inserts the
company name, enter

<listchoice command="jsconame’>company name</listchoice>

See Also: "Creating a List Item that Generates No Command” on page 185

NoOTE To learn how to create a custom command, see "Custom Commands” on
page 215.

5. Enter closing selection (</selections>) and command (</command>) tags.
Here is a full example of the list.

<command name="‘companyinfo’ style="list'">
<tooltiptext>Insert company info</tooltiptext>
<selections name="myselectionlist'>
<listchoice command="jsconame">company name</listchoice>
<listchoice command="jscoaddress'>company address</listchoice>
<listchoice command="jstcotelnum'>company tel number</listchoice>
</selections>
</command>

6. Find the interface section of the XML configuration file.

<?xml version="1.0"?>

<config product="eWebEditPro">
<I-- Valid positive values are: yes, true, 1 -->
<!-- Valid negative values are: no, false, 0 -->
<interface

7. Within the interface section, move to the toolbar menu that you want to
modify. (See "Finding a Toolbar Menu'’s Internal Name” on page 168.)

8. Move to the line within the menu tags where you want to add the new item.
Buttons and dropdown lists appear on a toolbar in the sequence in which
they are listed in the menu definition.

9. Enter the syntax to identify the new item. To continue with the above
example, you would enter <button command="'companyinfo"/>. (The
syntax for the button element is described in “button” on page 272.)

For example, if a toolbar menu definition has three buttons, cut, copy and
paste, and you want to add the dropdown list after paste, move to the line
following paste and add the new button command, as illustrated below (red
indicates text that you insert).

<menu name="‘editbar" newRow="false" showButtonsCaptions="false" wrap=""true'>
<caption localeRef="btnMainCap">Edit</caption>
<button command="cmdcut"/>
<button command="‘cmdcopy"'/>
<button command="‘cmdpaste'/>
<button command="‘companyinfo’/>
</menu>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 175

Defining the Toolbar

10. Place the following JavaScript on the page that displays the editor between
the body'’s script tags. You can enter the function above or below the line that
invokes the editor.

NOTE This section does not explain how to create custom commands. See "Custom
Commands” on page 215 for that procedure.

function eWebEditProExecCommand(sEditorName, strCmdName, strTextData, IData)

{

if ("jsconame"™ == strCmdName)
{
eWebEditPro. instances[sEditorName].editor.pasteHTML("Widgets, Inc');
b

else if ("jscoaddress"™ == strCmdName)
{
eWebEditPro. instances[sEditorName].editor.pasteHTML(*'1 Main Street, New York, New York');
3

else if ("jstcotelnum”™ == strCmdName)
{
eWebEditPro. instances[sEditorName].editor.pasteHTML("'1-800-111-2222"");
3

b

Users will see the new toolbar menu arrangement the next time they sign on.

Removing a Toolbar Button or Dropdown List

NOTE This is only element for which you cannot set the enabled property to “false” so
that the editor will ignore its values.

1. Within the interface section of the configuration data, move to the definition of
the toolbar menu that you want to modify.

Move to the item that you want to remove.
To permanently remove the button, select the entire line and press <Delete>.

To temporarily remove the button, surround it with the characters that your
xml editor uses to "comment out" text that is not executable code.

Users will see the new toolbar menu arrangement the next time they sign on.

Rearranging Buttons/Dropdown Lists on a Toolbar Menu

Buttons and dropdown lists appear on a toolbar menu in the sequence in which
they are entered into the configuration data. For example, the following toolbar

=YY 1

menu definition would create this menu

<menu name="‘editbar™
<button command="cmdcut'/>
<button command="‘cmdcopy"'/>
<button command="‘cmdpaste'/>
<button command="cmdfind"/>
<bar/>

</menu>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 176

Defining the Toolbar

NOTE The above illustration shows default images assigned to the commands in the
example toolbar menu definition. However, you can modify these images using
the image attribute of the command element.

To rearrange the toolbar buttons on a toolbar menu, follow these steps.

1. Within the interface section of the configuration data, move to the definition of
the toolbar menu that you want to modify.

Move to the item that you want to move.
Select the entire line and cut it.

Move to the line where you want the item to appear and paste the text you cut
in Step 3.

Users will see the new toolbar menu arrangement the next time they sign on.

Adding a Space Between Two Toolbar Menu Items

You can add a space command to separate two toolbar menu items.

_ b B
Buttons without a space command
K

Buttons with a space command

(For details, see “space” on page 292.)
To add a space command, follow these steps.

1. Within the interface section of the configuration data, move to the definition of
the toolbar menu that you want to modify.

2. Move to the item after which you want to insert the space and enter <space/
>,

Users will see the new toolbar menu arrangement the next time they sign on.

Adding a Separator Bar Between Two Toolbar Menu Items
Use the bar command to place a

B#H| oo
® vertical bar on a toolbar or

Inzert Table...

* horizontal bar ML LS on a popup menu

To add a bar, follow these steps.

1. Within the interface section of the configuration data, move to the definition of
the menu that you want to modify.

2. Move to the item after which you want to insert the space and enter <bar/>.
Users will see the new menu arrangement the next time they sign on.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 177

Defining the Toolbar

Changing the Image that Appears on a Toolbar Button

Use the command element’s image attribute to specify the image that appears on
a button.

Each standard command has a default image. You can replace the default image
with another standard image or a custom image. If you are creating a custom
command, there is no default image. In this case, you can assign a standard or
custom image to it.

If you do not assign an image to a command, the command’s caption text appears
on the toolbar button or menu.

A list of standard images appears in “Images Supplied by eWebEditPro” on
page 299. If you want to create your own image, see “Creating Your Own
Images” on page 308.

To modify the image that appears on a button, follow these steps.

1. Within the interface section of the configuration data, move to the definition of
the toolbar menu that you want to modify. (See "Finding a Toolbar Menu’s
Internal Name” on page 168.)

On that menu, find the button whose image you want to change.

Identify the command assigned to the button. For example, in the following
example, the command assigned to the first button on the toolbar menu
named editbar is cmdcut.
<menu name="‘editbar™ .._.........
<button command="cmdcut"/>
<button command="‘cmdcopy"'/>
<button command="‘cmdpaste'/>
<button command="cmdfind"/>
<bar/>
</menu>

4. Move to the features section of the configuration data.

5. Find the command that you identified in Step 3.
<command name="‘cmdcut" enabled=""true">
<image key="Cut'/>
<caption localeRef=""cmdCut">Cut</caption>
<toolTipText localeRef="cmdCut">Cut</toolTipText>
</command>

6. Replace the command’s image element with the new image.
As examples

® to specify the standard image “world”, use this code:
<command name="‘cmdcut" enabled=""true">

<image key="world"/>

<caption localeRef="cmdCut">Cut</caption>

<toolTipText localeRef="cmdCut">Cut</toolTipText>
</command>

® to specify a custom image file named customcut, located in folder to which
eWebEditPro is installed, use this code:

<command name="‘cmdcut" enabled=""true">
<image src="'[eWebEditProPath]/customcut.gif"/>
<caption localeRef=""cmdCut">Cut</caption>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 178

Defining the Toolbar

<toolTipText localeRef="cmdCut'">Cut</toolTipText>
</command>

7. Users will see the new image the next time they sign on.

Displaying Button Caption Text

Caption text appears on toolbar buttons in the user interface.

NOTE To determine the alignment of text within a button, edit the textAlignment
attribute of the toolbar menu element. See “Defining the Alignment of Caption
Text” on page 179.

To display caption text for all buttons on a toolbar menu, follow these steps.

1. Within the features section of the configuration data, move to the definition of
the command whose caption text you want to display.

2. Setthe visible attribute of the command element definition to “true”. (The
default value of this attribute is "false".) For example:

<command name="cmdcut" style="icon" visible="true">
<image key="Cut"/>
<caption localeRef=""cmdCut">Cut</caption>

3. Move to the interface section of the configuration data.

4. Set the showButtonsCaptions attribute of the toolbar menu element to
"true".

<menu name="editbar' showButtonsCaptions="true"...

Users will see the caption text the next time they sign on.

To remove the display of caption text for a toolbar menu, reverse Step 4 above.

Defining the Alignment of Caption Text

You can set the alignment of button caption text using the textalignment
attribute of the menu element. The possible alignment choices are listed below.

® top

® |eft

® right

® bottom
® center

JJCutc'rE, 0y

Button with Left Aligned Caption Text

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 179

Defining the Toolbar

You should only apply an al ignment attribute to a button that displays caption
text. By default, buttons do not display caption text. The procedure for displaying
button caption text is described in “Displaying Button Caption Text” on page 179.

To change the alignment of button caption text, follow these steps.

1. Within the interface section of the configuration data, move to the definition of
the toolbar menu whose button text alignment you want to change.

2. Edit a value for the textal ignment attribute of the menu element
definition. (The default value is "top".)

Possible values are:

® top

® left

® right

® bottom
® center

Users will see the new alignment of the caption text the next time they sign on.

Translating Button Captions and Tool Tips

As explained in “Modifying the Language of eWebEditPro” on page 201, you can
translate the language of eWebEditPro’s user interface into several foreign
languages. You can translate these elements of the interface.

® button caption text (if being displayed)
® tooltip text
® jtems on a pull-down menu

® jtems on a dropdown list

For any command in the configuration data, the ref or localeRef attributes
assign a code that maps to a translation value in the localization file. For example,
for the cut command, the standard ref value is cmdCut.

If a localization file is assigned to the this. locale elementin the
ewebeditprodefaults.js file, then eWebEditPro performs these actions before
displaying the toolbar. For each command, it

1. Finds the code assigned to a command’s ref or localeRef attribute.
2. Finds the corresponding value for the code in the localization file.
3. Displays the localization file value in the interface.

Example
For example, if you assign the German localization file in the

ewebeditprodefaults.js file, and you are displaying button caption text, when
eWebEditPro launches, it

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 180

Defining the Toolbar

Creating a Popup

<features
<external>

Finds the localeRef value for the cut button, CmdCut.

2. Finds the translation for that text in the German localization file, <ts
id="cmdCut''>Ausschneiden</ts>.

3. Displays the text from the German localization file on the cut button, in this
case, Ausschneiden.

To change the German text that appears, edit the localization file, in this case,

locale0407b.xml.

"Modifying the Language of eWebEditPro” on page 201 provides more details

about modifying the language of eWebEditPro’s user interface.

To learn about creating a custom command, see " on page 158

Menu
You can assign a popup menu to a toolbar button. You might want to do this to
provide access to many toolbar commands while limiting the toolbar to one row.

When a popup menu is assigned to a toolbar button, and a user clicks the button,
the menu appears below the button, as illustrated below.
EL_ Format | B I 10

i= MNumbers
i= Bullets
= Outdent
Indent

ik
l

Left

Center

Follow these steps to create a popup menu. In this example, the menu appears
on the toolbar with the text View As. When users click the View As button, they
see a menu with two choices, as illustrated below.

"-.r“iew.-'l.s| B r o ||J_|§:

(v v View Az WYSIWYG
[Wiew As HTML

1. Within the features -> external section of the configuration data, create a
command to display the popup. Note that the command’s caption will appear
on the toolbar, indicating the menu’s purpose. (For information about the
syntax of the command element, see “command” on page 275.)

<command name="viewasselections" style="icon" visible="true" ref="btnTxtVA" >

</command>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 181

Defining the Toolbar

2. Move to the interface section of the configuration data and create a popup
menu. Add to the menu the buttons that you want to make available.

In this example, you are adding one button for ViewAsWYSWIG and another
one for ViewAsHTML. (For information about the syntax of the popup
element, see “popup” on page 290.)

<popup name="ViewAsPopup" localeRef="btnMyViewAs">View As</caption>

<button command="cmdviewaswysiwyg"” />

<button command="cmdviewashtml" />

</popup>

3. Add to an existing or new menu a button that invokes the command you
created in Step 1.

<menu name="ViewAsBar' newRow="false" showButtonsCaptions="false" style="false" >
<caption localeRef="btnViewAs">View As...</caption>
<button command="viewasselections" />

</menu>

4. Within the button definition, specify a popup attribute. Enter the name of the
menu you created in Step 3 as the value of the popup attribute.

<menu name="ViewAsBar" newRow="false" showButtonsCaptions="0" style="0" >
<caption visible="0" localeRef="btnViewAs'">View As...</caption>
<button command="viewasselections' popup="ViewAsPopup" />
</menu>

Users will see the popup menu the next time they sign on.

Determining which Fonts, Font Sizes, and Headings are Available

When you install eWebEditPro, the default toolbar provides the following fonts,
font sizes and headings in selection boxes illustrated here.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 182

Defining the Toolbar

J_I M aormal * Times Mew Roman, "= 312 pt] -
- 1 1 1
Heading Font Font Size
Display Command name Default Choices
item
Heading cmdheaderlevel e Normal
® Heading 1
® Heading 2
® Heading 3
® Heading 4
® Heading 5
® Heading 6
Font cmdfontname ® Arial, Helvetica

® Comic Sans MS

® Courier New, Courier

® Symbol

® Times New Roman, Times

® \erdana, Helvetica

Font size cmdfontsize ® 1(8pt)
e 2(10pt)
e 3(12pt)
* 4(14p
e 5(18pt)
® 6(24pt)
e 7(36pt)

Changing Available Fonts
To change the list of fonts available to users, follow these steps.

1. Within the features section of the configuration data, go to the line that begins
<selections name="fontnamelist".

2. Delete or add fonts to the list.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 183

Defining the Toolbar

NOTE * A font only appears on a Web page if it is installed on the computer of the user
viewing the page. You can do this with any font, including Asian fonts, but the
client must be able to support the character set and that font must be on the
system.

¢ The toolbar cannot display HTML, so if you add any fonts, such as a Japanese
font, you need to type in the actual Japanese characters and not use entity
names or character references. When you do this, remember to change the
encoding from is0-8859-1 to your encoding type, such as, shift_jis.

 If the system does not support the character set, broken characters appear.

» If more than one font is entered for a selection, the browser tries to display the
the first font. If it cannot find that font, it tries to use the second one, etc. If the
system has no fonts, it uses the browser's default.

Users will see the new font list the next time they sign on.

Changing Available Font Sizes

To change the list of fonts available to users, follow these steps. Note that the list
cannot have more than seven sizes.

1. Within the features section of the configuration data, go to the line that begins
<selections name="fontsizelist">.

2. Delete or add font sizes to the list. For example, to restrict users so that they
can only apply font sizes 1, 3, 6 and 7, delete the lines for fonts 2, 4 and 5
(crossed out below).

<listchoice command="cmdfortsizmel” localeref="mraaf'31">1 (§ ptl-<flistchoice’

<listchoice command="cmdfortsise?” localeref="mraf32" % [1i pt)<flistchoices

<listchoice command="cmdfortsisef” localeref="mmaf36" 6 [£4 pt)<flistchoices
<listchoice command="cmdfortsizme?" localeref="mrnaB'37" T (26 pt)<flistchoice:

Users will see the updated list of font sizes the next time they sign on.

Changing Available Headings
To change the list of headings available to users, follow these steps.
Note that the destination browser translates heading sizes into specific font sizes.

1. Within the features section of the configuration data, go to the line that begins
<selections name="headinglist'>.

2. Delete or add heading levels to the list.
For example, to restrict users so that they can only apply headings 1, 3 and
6, delete the lines for headings 2, 4 and 5 (crossed out below).
<selections name="headinglist" enabled="true" sorted="true">
<listchoice command="cmdheadingstd" localeref="hdgtxtnorm">Normal</listchoice>
<listchoice command="cmdheadingl” localeref="hdgtxtlvIl1l">Heading 1</listchoice>

<listchoice

command=""cmdheading3" localeref="hdgtxtlvI3">Heading 3</listchoice>

o nd="" dhead a4 O ef="hdg H d a ho

<listchoice command="cmdheading5"” localeref="hdgtxtlvl5">Heading 5</listchoice>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 184

Defining the Toolbar

<listchoice command="cmdheading6" localeref="hdgtxtlvl6'">Heading 6</listchoice>
</selections>

Users will see the new heading list the next time they sign on.

Creating a List Item that Generates No Command

On the eWebEditPro toolbar, you may want to create a dropdown list whose first
item describes the list, or is a default value. If the user selects the first item, no
action should occur. Here is an illustration of such a dropdown list.

Color palette

Aqua

Black,

Blue v
Fuchszia

[aray

Green

Lirne &7

You assign commands to list items in the configuration data. If a command is not
assigned to an item, the command assigned to the list is sent. This section
explains how to disable activity for a list selection.

Every command assigned to a list item is sent in the onexeccommand event.
These commands do not need to be defined, as they do when listed on toolbars
Or popup menus.

Since the commands do not need to be defined, the values can be anything. If a
command is defined that is not handled by the editor or by scripting, the command
is ignored.

For example, you want to create a title for a list of colors, such as Select Color.
To do this, assign a command that is not handled to the list item, for example,
noop. You would define the list like this.

<selections name="fontcolorlist" enabled="true" sorted="true'>
<listchoice command="noop">Select Color</listchoice>
<listchoice command="cmdfontcolor">Color palette</listchoice>
<listchoice data="#FF0000">red</listchoice>
<listchoice data="#0000FF">blue</listchoice>
<listchoice data="#00FF00">green</listchoice>

</selections>

If a user selects Select Color from the dropdown list, nothing happens.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 185

Dynamically Changing the Editor

This section explains how to dynamically change the default options for each
of eWebEditPro’s features using JavaScript

® on the server side, when the editor is created

® on the client side, after the editor is created

You can use these two approaches together if you wish.

Dynamically Creating Configuration Data on the Server Side

The server can dynamically create configuration data when the editor
requests it. The data can be populated from a database. You can do this
because the configuration of XML data is not limited to a flat file. This is one
of XML's most powerful characteristics.

To use this method, set the editor's config parameter to a URL that returns
configuration data as XML. The parameter must be set before the
eWebEditPro editor is created. Once the editor is created, the toolbar is
static unless you also implement the technique described in “Dynamically
Changing the Editor on the Client Using JavaScript” on page 187.

In the sample code below, the server (in this example, running ASP) returns
XML data as it would appear in a flat config.xml file. But, the server is creating
the file dynamically.

You use a URL parameter (id=1, in this example) to provide necessary
information to the server. URL parameters are optional.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 186

Dynamically Changing the Editor

<script language="JavaScriptl.2">

eWebEditPro.parameters.reset(); // set all parameters to their default values

// Request the configuration.

eWebEditPro.parameters.config = eWebEditPro.parameters.path + "config.asp?id=1";

</script>

Avoiding Problems When Dynamically Changing the Toolbar on the

Server

If you plan to generate configuration data for the toolbar on the server, keep the
following points in mind.

If you are doing this with ColdFusion, you should turn off debug information. If
you do not, you will receive a confusing error message.
You can turn off debug information site wide in the Cold Fusion Administrator

Panel, under Debugging. Or, you can do this for a single page using the
following code <CFSETTING SHOWDEBUGOUTPUT=""NO"*>.

Caching may make it difficult to view differences in the editor. You should
eliminate caching on the browser and also in the code.

For example, at the top of an ASP page, the following code forces the
browser to flush the cache <RESPONSE . EXPIRES=0>.

If you dynamically create the toolbar in Netscape, the editor cannot access
cookie information.

Dynamically Changing the Editor on the Client Using JavaScript

You can dynamically alter the toolbar after the editor is created using client-side
JavaScript. You can add or remove buttons, dropdown lists, etc. Typically, the
toolbar is changed in the editor’s onready event as a result of user interaction.

Two sections of this documentation provide the information about client-side
scripting.

“Disabling and Enabling Menu Items within Scripting” on page 187 provides
tips and techniques for using client scripting to access menu functionality.

“The Toolbar Object Interface” on page 194 provides the API definition of the
Toolbar object contained within the eWebEditPro interface. The Toolbar
object interface contains properties and methods that let you control menu,
button, and command functionality.

Disabling and Enabling Menu Items within Scripting

You can use client scripting to access menu functionality. This includes menu
creation, command creation, and display status. This section describes how to
disable and enable a menu item through scripting.

Accessing Menus and Commands

To access menus, use the Toolbars method of the eWebEditPro control. This
method returns a reference to the menu control object.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 187

Dynamically Changing the Editor

var objlInstance = ewebEditPro.instances[seditorname];

var objMenu = objlnstance.editor.Toolbars();

To access a command, use the following method in the toolbar object.
Method: Commandltem(CommandName As String) As CCommandItem
See Also: “Method: Commanditem” on page 51

The following are methods in the Command object used to affect enable status.
Method: setProperty(Name As String, Value As Variant)

See Also: “Method: setProperty” on page 99

Method: getPropertyBoolean(Name As String) As Boolean

See Also: “Method: getPropertyBoolean” on page 72

Property: CmdGray As Boolean

See Also: “Property: CmdGray” on page 106

Enabling and Disabling a Command

To enable or disable a command, first retrieve the interface to menus using the
Toolbar method:

var objlInstance = eWebEditPro.instances[seditorname];
var objMenu = objlnstance.editor.Toolbars();

Then, use the Toolbar object to gain access to a specific command.

var objCommand = objMenu.Commandltem(*‘cmdcut'™);

To disable an icon command, set the CmdGray property to true.
objCommand.setProperty(**CmdGray', true);

To enable an icon command, set the CmdGray property to false.
objCommand.setProperty("'CmdGray', false);

Example

Below are functions that disable and enable a command item.

function DisableCommand(seditorname,scommandname)

{

var objlInstance = eWebEditPro.instances[seditorname];

var objMenu = objlnstance.editor.Toolbars();
objMenu.Commandltem(scommandname) .setProperty(*'*CmdGray*’, true);

}

function EnableCommand(seditorname,scommandname)

{

var objlInstance = eWebEditPro.instances[seditorname];

var objMenu = objlnstance.editor.Toolbars();
objMenu.Commandltem(scommandname) .setProperty(‘'‘CmdGray", false);

}

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 188

Customizing the Popup Button

Customizing the Popup Button

This section explains how to customize a popup button and window. To see an
example of a popup button and the window containing eWebEditPro that appears
when the user presses the button, follow this path (beginning with the Windows

Start button).

Start > Programs > Ektron > eWebEditPro 4 > Samples > Multiple Editors

Scroll to the bottom of the window to see the Popup button (

default caption is “Edit”.

Edit

), whose

There are two approaches to customizing the popup button and window. You can

® Change values in ewebeditprodefaults.js and ewebeditpromessages.js. All
properties within these files that start with popup affect the popup button or
window. For example, the popup button caption is declared as
popupButtonCaption in ewebeditpromessages.js.

See Also: "The ewebeditprodefaults File” on page 227; "The

ewebeditpromessages File” on page 228

® Change the properties using JavaScript. Two objects, buttonTag and popup,
are part of the parameters object. For example,

eWebEditPro.parameters._buttonTag.value="Edit Description';

eWebEditPro.createButton(*"btnDesc', "Desc');

NOTE You cannot use JavaScript at run time to change popup properties in
ewebeditpromessages.js or ewebeditprodefaults.js.

The JavaScript objects correspond as shown below.

Parameter

ewebeditprodefaults.js

buttonTag.start

popupButtonTagStart

buttonTag.value

popupButtonCaption (in
ewebeditpromessages.js)

buttonTag.end popupButtonTagEnd
popup.url popupurl

See Also: "Property: popup” on

page 133

popup.windowName popupWindowName

popup.windowFeatures

popupWindowFeatures

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

189

Customizing the Popup Button

Parameter ewebeditprodefaults.js
popup.query popupQuery

styleSheet styleSheet

See Also: "Style Sheets” on

page 367

"Customizable JavaScript Files” on page 227 explains how to edit the JavaScript
files. The rest of this section explains how to customize the popup button using
JavaScript.

Customizing the createButton Command

By default, when you create a popup edit button for eWebEditPro (using the
<input type=button> element), a standard HTML button with a caption of
Edit is created.

In JavaScript, use the createButton method to create the button.
eWebEditPro.createButton(*'btnName', "contentFieldName');

To customize the popup button, use the parameters buttonTag object. You can set
it in ewebeditprodefaults.js or in JavaScript before calling the createButton
method.

You specify the popup button caption in ewebeditpromessages.js as
popupButtonCaption. You can also set it in JavaScript using the value property.

The following are values for the type property (or popupButtonTagType in
ewebeditprodefaults.js). They let you determine the form of the popup edit button.

Value Description HTML
inputbutton Standard Input Button <input type="button'>
button Button <button>Edit</button>
image Graphic Image (.qgif or .jpg)
imagelink Hyperlinked Image <a>
hyperlink Hyperlinked text <a>Edit
custom Custom HTML (custom)
For example:

<textarea name=Summary rows=10 cols=70>
<script language="JavaScriptl.2">

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 190

Customizing the Popup Button

eWebEditPro.parameters.reset();
eWebEditPro.parameters._buttonTag.type = “imagelink';
eWebEditPro.createButton(*"'btnl", *‘Summary');
</script>

You can assign custom attributes using the tagAttributes property (or
popupButtonTagTagAttributes in ewebeditprodefaults.js). For example:

eWebEditPro.parameters._buttonTag.tagAttributes = "onmouseover="mymouseover()"";

If an image type is selected, you can customize the image using the imageTag
object. Set the imageTag properties to specify the attributes of the tag. For
example:

eWebEditPro.parameters.buttonTag. imageTag.src = "myimage.gif";
eWebEditPro.parameters._buttonTag. imageTag.-alt = "Click to edit";
eWebEditPro.parameters._buttonTag. imageTag.width = 40;
eWebEditPro.parameters.buttonTag. imageTag.-height = 20;

To create your own custom HTML, use the start and end properties
(popupButtonTagStart and popupButtonTagEnd in ewebeditprodefaults.js). The
string 'eWebEditPro.edit("the-element-name")' will be inserted between start and

end.

For example:
eWebEditPro.parameters._buttonTag.start = "<object ...><param name="editjs" value="";
eWebEditPro.parameters._buttonTag.end = "">_._._</object>";

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 191

Customizing Context Menus

This section describes how to customize context-sensitive menus that appear
when a user right-clicks the mouse. For example, the following menu appears
if text has been selected when the user right-clicks the mouse within the
editor.
Cut
Copy

Paste

Select All
Clean HT kL

Hyperlink...

Edit HTML

v iew as WYSIWYG
Yiew az HTML

Ficture...

A different context menu appears if no text was selected or if the cursor is
within a table.

The next sections explain how to remove individual commands from the
context menus, and how to suppress all of them. You cannot add items to a
context menu.

Removing Commands from a Context Menu

To remove a command from the context menu, set its enabled attribute to
“false”. Note that this change also removes the command from the toolbar
menu. You cannot remove a command from the context menu and leave it on
the toolbar menu.

For example, to remove the copy command from the context menu, edit the
configuration data as illustrated below. (To learn more about editing
configuration data, see “Editing the Configuration Data” on page 248.)

<standard>
<command name="‘cmdCopy" enabled="false">
</command>

</standard>

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 192

Customizing Context Menus

Context Menu Commands and their Internal Names

In order to remove a command from a context menu, you must know its internal
name. This table lists the internal name of most commands.

Menu Command Internal Name
Cut cmdcut

Copy cmdcopy

Paste cmdpaste

Select all cannot be removed
Clean HTML cmdclean
Hyperlink... cmdhyperlink

Edit HTML edithtml

Insert HTML edithtml

View as WYSIWYG cmdviewaswysiwyg
View as HTML cmdviewashtml
Picture... cmdmfumedia

Suppressing the Context Menu

The configuration data’s interface element has a context attribute that
determines whether context menus appear when a user right clicks the mouse.

<config product="eWebEditPro'>
<interface name="standard" visible ="true" allowCustomize="false" context="false'">

If the context attribute is set to “true”, the context menu appears when the right
mouse is clicked. If the attribute is set to “false,” the context menu is suppressed.

The default value for context is “true”.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 193

The Toolbar Object Interface

This section describes the API definition of the Toolbar object contained
within the eWebEditPro interface. It assumes that you have moderate
expertise in JavaScript, HTML, and ActiveX technology.

The Toolbar object interface contains properties and methods that let you
control menu, button, and command functionality. See “Toolbars Object” on
page 18.

To retrieve the Toolbar object, use the eWebEditPro Toolbar method.
var objMenu = objEditor.Toolbars();

This section explains the following topics.
® Defining Menus and Commands

® Toolbar Object Quick Reference

® Command Object Quick Reference
® Script Example

® Command Values

Defining Menus and Commands

The menus and commands are typically defined in the config.xml file
assigned to the editor. This file defines the command names, how they look,
and where they appear in the user interface.

You can add scripting to modify or supplement the XML data. The server side
can anticipate changes required for a user and dynamically generate a
customized XML from database information. To accomplish this, it may be
necessary to interact with commands at a level below user interaction. This
low level interaction can include creating a toolbar using commands
supported by a script and removing commands not supported by a script.

This following sections contain information to help a developer perform these
operations. In doing so, it provides a reference to the API.

Toolbar Object Quick Reference
See "Toolbars Object” on page 18.

Command Object Quick Reference
See "ObjectCommand Item Object” on page 21.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 194

The Toolbar Object Interface

Script Example

The following code is a sample JavaScript 1.2 function that creates a menu,
creates buttons and commands, and grays out command items.

objMenu.ToolbarAdd(**SampleMenu™, "This is an External Menu', 0, 0, 0, 0, "");

objMenu.CommandAdd(**jssamplel™, "Sample Command 1", "Sample Command 1", "key", 0, 0, "SampleMenu", 0,-1);
objMenu.CommandAdd(*'jssample2™, *"Sample Command 2", *"Sample Command 2", "key", 0, O,

0, 0, "SampleMenu", 0, -1);
0, 0, "SampleMenu™, 0, -1);
0, 0, "SampleMenu”, 0, -1);

y

e
ey

function AffectMenusAndCommands(seditorname)
{
var objlnstance = eWebEditPro. instances[seditorname];
var objMenu = objlnstance.editor.Toolbars();
// This shows how to create a menu.
// This shows how to add commands to a menu.
“"SampleMenu™, 0, -1);
objMenu.CommandAdd(**jssample3", "Sample Command 3", "Sample Command 3", "key",
objMenu.CommandAdd("jssample4™, "Sample Command 4", “Sample Command 4", "ki
objMenu.CommandAdd(**jssample5™, “Sample Command 5", “Sample Command 5", "k
// This shows how to disable an existing command.
objMenu.Commandltem(**cmdcut™) .setProperty(**CmdGray", true);
objMenu.Commandltem(*'cmdpaste') .setProperty("*CmdGray', true);
¥

Command Values

The following command values are collections of API parameter value types.

® etbToolbarOptions

® etbToolbarStyles

® etbCaptionAlignment

® etbToolbarLocation

® ethToolbarModifications

® etbCommandOptions

® etbCommandStyles

® etbhCommandModifications

® etbErrorValues

etbToolbarOptions

The menu creation options are assembled using the bitwise OR operation.

Value

Description

Ox1

Invisible

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 195

The Toolbar Object Interface

0x2

New menu row

0x4

ShowCaption

0x8

Wrap rather than scroll

0x10

Show tool tips

0x20

Show customize selection menu
button

0x40

Floating

etbToolbarStyles

Toolbar Styles. Used when creating a toolbar.

Value Description

0 Icon Bar

1 Pulldown Menu

2 Tab List

3 Popup or context menu

etbCaptionAlignment

Caption alignment of buttons. Use these values when creating a toolbar or

command.

The effects are seen only when a toolbar is floating or a command is defined to

show its caption.

See Also: "Defining the Alignment of Caption Text” on page 179

Value Align caption to the
0 No alignment of caption
1 Top

2 Bottom

3 Left

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

196

The Toolbar Object Interface

Right

Center

etbToolbarLocation

Toolbar Location. Used when creating a toolbar.

Value | Align toolbar to the

0 No alignment of toolbar. Default
(top) is used.

1 Top

2 Bottom

3 Left

4 Right

5 Form

etbToolbarModifications

Toolbar modifications allowed. Used when modifying a toolbar.

Value

Description

Delete command wherever it is.

Remove from toolbar but keep
on customization list.

Move from the selection to the
toolbar.

Set as pressed in or checked.

Set as un-pressed or
unchecked.

Toolbars only - clear all
commands.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

197

The Toolbar Object Interface

6 Disable the item.

7 Enable the item.

etbCommandOptions

Command creation options are bitwise or'ed together. Used when creating or
modifying a command.

Value Description

Ox1 Invisible

0x2 Initially shows as disabled

etbCommandStyles
Command Styles. Used when creating a command.

Value | Description

0 Use the Default button style when the function it represents has no
dependence on other functions. For example, a Save File operation can be
performed at any time.

Further, when the button is depressed, it springs back again when the function
is finished.

1 The Check style should be used when the function it represents is a toggle of
some kind. For example, when using a RichTextBox control, selected text can
be either bold or not. Thus, when the button is depressed, it stays depressed
until it is pressed again.

2 Not supported.

3 The separator style has no function except to create a button that is eight
pixels wide. Use the separator style to create a button that separates one
button from another.

See Also: "Adding a Separator Bar Between Two Toolbar Menu Items” on
page 177

Or, use it to enclose the group of buttons with the ButtonGroup style.

4 The placeholder style functions as a "dummy" button. Use this button to
create a space on the Toolbar control where you want to have another control
appear (such as a ComboBox or ListBox control).

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 198

The Toolbar Object Interface

5 Dropdown list box.

6 Text edit box.

etbCommandModifications

Command modifications allowed. Used when modifying a command.

Value

Description

Delete all instances of a
command.

Command is removed from the
toolbar but kept on the
customization list.

Display command on toolbar or
menu.

Set as pressed in or checked.

Set as un-pressed or unchecked.

For toolbars only; clear all
commands.

Disable the item.

Enable the item.

etbErrorValues
Error definitions.

These are returned by the Menus interface methods.

Value Description

0 No error.

1 Functionality not supported with this
version.

2 No toolbars have been created for
any operation.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

199

The Toolbar Object Interface

Invalid ID given for a command or
toolbar.

Unknown location requested for text
or command.

Internal error.

The specified toolbar does not
exist.

Error using definition file.

Definition not found.

Configuration can’t be used, even if
given.

10

Error creating item.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

200

Modifying the Language of eWebEditPro

You can modify the language in which eWebEditPro’s dialog boxes, menus and
messages appear, as well as the language of the content. You can even spell
check the content in a foreign language.

You might want to modify the language because your users speak a different
language, or because you want to customize the standard text provided with the
system. This chapter explains how to accomplish these goals.

NOTE Messages, strings and labels intended for developers are not translated.

See Also: “Translating Button Captions and Tool Tips” on page 180
This section explains the following topics.

® How eWebEditPro+XML Determines the Language of the User Interface
® Locale Files

® Translating eWebEditPro+XML's User Interface

® Languages Supported by Windows

® Working with non-English Content

® Using the Languages Sample

® Displaying Menus and Dialogs in a non-European Language

® Setting the Language of Spell Checking

® Modifying Standard Text (including English)

How eWebEditPro Determines the User Interface Language

When a user launches a page that hosts eWebEditPro, it

1. checks the value assigned to the this. locale variable in
ewebeditprodefaults.js.

®|f the this.locale parameter is the default value (this.path + ™),

eWebEditPro displays dialogs, menus, and messages in the language
selected in Windows' regional settings.

®|fthe this. locale parameter is set to a specific locale file, eWebEditPro
uses the strings in the corresponding file. For example, this.locale =
this.path + "locale040ab.xml" instructs eWebEditPro to use the
locale040ab.xml locale file, which displays the user interface in Spanish.

*®|f eWebEditPro cannot find the locale file specified, it displays text in the
language selected in Windows' regional settings.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 201

Modifying the Language of eWebEditPro

Locale Files

NoOTE

2. displays the translation string for the text elements of the user interface.

For example, the eWebEditPro configuration data assigns a translation code
to each text string. In the configuration data, the Cut button’s translation code
is cmdCut. If the this. locale is set to locale040ab.xml (Spanish),
when the editor displays the tooltip text for the Cut button, eWebEditPro
finds cmdCut within locale040ab.xml and displays the Spanish translation
string: “Cortar.”

eWebEditPro’s locale files translate menus, dialog boxes, and messages to a
foreign language. "Standard Locale Files” on page 202 lists the languages into
which eWebEditPro is translated, and the locale code of each file.

The locale ActiveX control property may contain XML content, but it typically
refers to a directory or a locale file.

The locale files are installed by default to the directory to which you install
eWebEditPro. The file name consists of the following elements:

localelanguage identifierb . xml

The four-character language identifier specifies the language and country. For
example, locale0407b.xml = German.

Also within each locale file, an xml : lang attribute specifies the language code.
For example, xml:lang=""de" for German.

Standard Locale Files

Language(Country) Locale file Language
Code

Default (English) locale0000b.xml

Arabic locale0401b.xml ar

Danish locale0406b.xml da

Dutch locale0413b.xml nl

English locale0409b.xml en

French locale040ch.xml fr

German locale0407b.xml de

Hebrew locale040db.xml he

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 202

Modifying the Language of eWebEditPro

Language(Country) Locale file Language
Code
Italian locale0410b.xml it
Japanese locale0411b.xml ja
Korean locale0412b.xml ko
Portuguese (standard) locale0816b.xml pt
Russian locale0419b.xml ru
Simplified Chinese (China (PRC)) locale0804b.xml zh-cn
Simplified Chinese (Hong Kong) locale0c04b.xml zh-hk
Simplified Chinese (Macau) locale1404b.xml zh-mo
Simplified Chinese (Singapore) locale1004b.xml zh-sg
Swedish locale041db.xml SV
Spanish locale040ab.xml es
Traditional Chinese (Taiwan) locale0404b.xml zh-tw

Translating eWebEditPro’s User Interface

To have eWebEditPro appear in
this language

Do this

English

Nothing -- the interface automatically
appears in that language

One of the translated languages

See "Displaying the User Interface in a
Translated Language” on page 204.

Not a translated language but on the list
of Windows-supported languages

Translate text in several files into that
language. See "Translating the User
Interface to a Windows-Supported
Language” on page 205.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 203

Modifying the Language of eWebEditPro

To have eWebEditPro appear in Do this
this language

Not one of the Windows-supported You cannot display ewebEditPro user
languages interface menus and dialogs in non-
Windows supported language

Displaying the User Interface in a Translated Language

IMPORTANT! This procedure is only required if the client computer’s Regional Setting language
is different from the language in which you want to display eWebEditPro.

To select which translated language to use, follow these steps.

1. Navigate to the directory to which you installed eWebEditPro.
2. Open ewebeditprodefaults.js.

3. Find the line that begins this. locale.

4

Between the quotes following this.path+, insert the locale file of the
translation language. For example, to display eWebEditPro in Spanish,
change that line so that it looks like this:

this.locale = this.path + "locale040ab.xml";

For a list of languages and corresponding locale identifiers, see "Standard Locale
Files” on page 202.

5. Save ewebeditprodefaults.js.

From now on, eWebEditPro references the locale file specified in
ewebeditprodefaults.js for the text on tooltips, menus, dialogs, etc. It will also
display system messages from files whose name includes the two-character
alphabetical code for the specified country. To continue the example of translating
into Spanish, eWebEditPro would reference these files (es is the country code for
Spanish):

® installnowes.htm

® introes.htm

® ewebeditpromessageses.js
® section508tabletextes.js

6. Update the ewebeditpro.js file according to "Updating ewebeditpro.js” on
page 213.

7. Update the ewebeditprodefault.js file according to "Updating
ewebeditprodefaults.js” on page 214.

8. Update the ewepuitil.js file according to "Updating eweputil.js” on page 215.
See Also: "Translating Button Captions and Tool Tips” on page 180

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 204

Modifying the Language of eWebEditPro

Translating the User Interface to a Windows-Supported Language

To translate eWebEditPro’s dialogs boxes, menus and messages into one of the
approximately 100 languages supported by Windows, translate the English in the
following files into the new language. Instructions for translating each file appear
below.

See Also: "Languages Supported by Windows” on page 215

IMPORTANT! If the non-English language is listed on "Standard Locale Files” on page 202, the
files are already translated. See "Displaying the User Interface in a Translated
Language” on page 204.

Description of file File name Read this section

The locale file locale0000b.xml "Translating the Locale File
(localexxxxb.xml)” on page 206

System message and status bar ewebeditpromessages.js "Translating the Messages File

text (ewebeditpromessages.js)” on
page 211

The automatic client installation installnow.htm "Translating the Automatic

Web page Client Installation Web Page

(installnow.htm)” on page 207

HTML page that prompts user to intro.htm "Translating the Page that

install ewWebEditPro Prompts User to Install
eWebEditPro (intro.htm)” on
page 209

The Section 508 table dialog section508tabletext.js "Translating the Section 508

Tables Dialog” on page 212

The eWebEditPro JavaScript ewebeditpro.js "Updating ewebeditpro.js” on

file page 213

The eWebEditPro defaults file ewebeditprodefaults.js "Updating
ewebeditprodefaults.js” on
page 214

The eWebEditPro utility file eweputil.js "Updating eweputil.js” on
page 215

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 205

Modifying the Language of eWebEditPro

Translating the Locale File (localexxxxb.xml)

Browse to the eWebEditPro folder.
Open locale0000b.xml in a text editor.

Change the xml : lang value to the new language’s two character country
code. To find the country code, see "Languages Supported by Windows” on
page 215.

For example, change
<locale version="2" product="eWebEditPro" xml:lang=""en">
to

<locale version="2" product="eWebEditPro" xml:lang=""bg">

Replace the English text between each set of <ts> tags with the translation
text. For example, replace

<ts id=""abt">Cut</ts>

with

<ts id="abt">Bulgarian term for cut</ts>

Notes regarding values

One item on each menu must have a unique underlined character. The user
presses this character to access the menu option using a keyboard instead of
a mouse.

Use the ampersand (&) to underline a character. For example, enter &Help

to display Help.

You can underline a character inside nested menus, as in Edit -> Copy and
Tool -> Customize.

In Asian translations, use a Roman letter in parentheses at the end of word
and underline it. For example, (H).

Do not underline descending characters such as g, j, ¥, p, and q.

If using a plain text editor instead of an XML editor, use the entity name
instead of the character for the characters listed below.

Character Entity

& &

< <

> >

Line break 

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 206

Modifying the Language of eWebEditPro

6. Save the file under a new name. To create the new name, use the pattern
localexxxxb.xml, where xxxx represents the last four characters of the
corresponding language's identifier. To obtain the language identifier, see
"Languages Supported by Windows” on page 215.

For example, if the language is Bulgarian, the file’s name would be
locale0402b.xml .

Translating the Automatic Client Installation Web Page (installnow.htm)

1. Within the ewebeditpro5 folder, open the clientinstall folder.
2. Open installnow.htm.
3. Within the <head> tags, look for the following line:
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
If the <meta> tag is missing, add it.

4. |If necessary, replace the charset value for the language (for example, iso-
8859-1). See "Languages Supported by Windows” on page 215 for the
character set identifiers.

5. Translate the text. Text that requires translation is shown below in red. The
actual file may vary from what is shown. This sample was taken from
eWebEditPro version 2.1.

WARNING! Do not use the contents shown below. Start with the installnow.htm file provided
with eWebEditPro.

<I-- Revision Date: 2001-08-22 -->

<html>

<head>

<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<title>eWebEditPro Installation</title>

<script language=""JavaScriptl.2" src="../ewebeditpro.js''></script>
<style>

P { font-size : small; font-family : verdana, helvetica; }

H1 { font-family : verdana, helvetica; }

H2 { font-family : verdana, helvetica; }

A { font-family : verdana, helvetica; }

BODY { font-size : small; }

</style>

<script language="JavaScriptl.2">
<1--

function reloadOpener()

{
if (top.opener && !top.opener.closed)

top.opener.location.reload();

}

}
//-->
</script>

</head>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 207

Modifying the Language of eWebEditPro

<body onunload="reloadOpener()">

<p align="center'><h2 align="center'>
eWebEditPro
Automatic
Download and Installation
</h2></p>

<form method="post">

<input type=hidden name="DoneMsg" value="<p> </p><p align=centeré>&Ilt;font
face="Arial" size=4>Installation complete.</p>">

<input type=hidden name="RestartMsg" value="&It;p> &It;/p><p align=centeré>Please restart Windows to complete the installation.</
p>">

<p align="center'>

<img name=loadingMsg src="loading.gif" alt="Downloading, please wait..." width=234
height=30>

IT successful, the words "Installation complete™ will appear in the box below.
</p>

<script language="JavaScriptl.2">

<l-—

eWebEditPro.onready = onReadyHandler;

eWebEditPro.actionOnUnload = EWEP_ONUNLOAD_NOSAVE;
eWebEditPro.parameters.installPopup = null;

eWebEditPro.create('DoneMsg™, '100%", 200);

function onReadyHandler()
{

document.loadingMsg.style.visibility = "hidden";
eWebEditPro.refreshStatus();

ifT (eWebEditPro.autolnstallExpected())

{
eWebEditPro. instances[0] . load(document.forms[0] -elements._RestartMsg.value);
document.body.onunload = ***; // don"t reload the opener window
3
¥
//-->
</script>

<p>
<script language="JavaScriptl.2">
<Il--
document.write("IT a small red Xappears, try downloading the
DN
document.write("%);
document.write("client installation programand running it. ");
// >
</script>
</p>
<p>
For additional assistance, visit <a href="http://www.ektron.com/support"
target="_blank">Ektron"s support page.
</p>
<p align="center">
<input type="button" name="btnClose" value="Close" onclick="self.close()">
</p>
</form>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 208

Modifying the Language of eWebEditPro

</body>
</html>

6. Save the file as instal Inowxx . htm, where xx is the two letter country
code. The country codes are listed in "Languages Supported by Windows” on
page 215. For example, instal Inowbg. htm for Bulgarian.

Translating the Page that Prompts User to Install eWebEditPro (intro.htm)

1. Within the ewebeditpro5 folder, open the clientinstall folder.
2. Open intro.htm.
3. Within the <head> tags, look for the following line:
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
If the <meta> tag is missing, add it.

4. |If necessary, replace the charset value for the language (for example, iso-
8859-1). See "Languages Supported by Windows” on page 215 for the
character set identifiers.

5. Translate the text. Text that requires translation is shown below in red. The
actual file may vary from what is shown. This sample was taken from
eWebEditPro version 2.1.

WARNING! Do not use the contents shown below. Start with the intro.htm file provided with
eWebEditPro.

<IDOCTYPE HTML PUBLIC **-//W3C//DTD HTML 4.0 Transitional//EN">

<l-- Copyright 2001 Ektron, Inc. -->

<I-- Revision Date: 2001-05-16 -->

<html>

<head>

<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<title>Installing eWebEditPro</title>

</head>

<style>

P { font-size : small; font-family : verdana, helvetica; }
H1 { font-family : verdana, helvetica; }

H2 { font-family : verdana, helvetica; }

A { font-family : verdana, helvetica; }

BODY { font-size : small; }

</style>

<body>

<blockquote><blockquote>

<p align="center'><h2 align="center">

eWebEditPro
Automatic
Download and Installation

</h2></p>

<p>The page you are trying to view contains Ektron"s eWebEditPro editor. It will appear within
your browser. It allows you to enter content for web pages as easily as using a word
processor.</p>

<p>Before you can use eWebEditPro, it must be downloaded into your browser. When you click the
Install Nowbutton at the bottom of this page, eWebEditPro will be automatically
downloaded and installed. This process may take several minutes depending on the speed of your

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 209

Modifying the Language of eWebEditPro

network connection. Once downloaded, eWebEditPro will <i>not need to download again</i> unless
upgrading to a newer version. </p>

<p>You must have authorization to install programs on your computer. </p>

<p>Pictures similar to the one shown below may appear. The first is from <a href="http://

www . ektron.com™ target="_blank''>Ektron. The others, if they appear, are from Microsoft. ITf they do appear, please click
Yes to proceed.</p>

<p align="center">

</p>

<p>Check your Internet Explorer security setting. It must be set at Medium or lower to permit
downloading and running ActiveX controls. From the Tools menu, select Internet Options and
click the Security tab. </p>

<p align="center">

</p>

<p>Depending on your security settings, you may also be prompted with the questions shown here.
Click Yes each time.</p>

<blockquote>

<p>Do you want to allow software such as ActiveX controls and plug-ins to run?</
font></p>

<p>A script is accessing some software (an ActiveX control) on this page which
has been marked safe for scripting.
Do you want to allow this?</p>

</blockquote>

<p>Click on Install Now to proceed, or Cancel if you do not want to install
eWebEditPro.</p>

</blockquote></blockquote>

<p align="center'>

<form>

<input type=button value="Install Now "onclick="location_href="installnow.htm®">

<input type=button value="Cancel" onclick="self.close()">

</form>

More information on
Ektron®s eWebEditPro

</p>

</body>
</html>

6. Change the name of the installation file listed within intro.htm to the file you
saved under a new name at the end of "Translating the Automatic Client
Installation Web Page (installnow.htm)” on page 207. To continue with our
example, you would change
<input type=button value="Install Now "onclick="location.href="installnow.htm"">

to

<input type=button value="Install Now "onclick="location._href="installnowbg.htm"">

7. To display the Internet Explorer Security Options dialog in the selected
language, follow these steps.

— Save an image of the dialog as a GIF file named as "ieoptionsxx.gif",
where xx is the two letter language code used earlier.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 210

Modifying the Language of eWebEditPro

— Reduce the image to 75% of the original size using a commercially
available image editor.

— Save the image as "ieoptions2xx.gif", where xx is the two letter language
code used earlier.

— Copy the image to the clientinstall directory.

— In the intro.htm file, change the IMG tag as shown below, where xx is the
language code, WWW is the width of the image in pixels, and HHH is the

height.

8. Save the file as introxx.htm, where xx is the two letter country code. The
country codes are listed in "Languages Supported by Windows” on page 215.
For example, introbg.htm for Bulgarian.

Translating the Messages File (ewebeditpromessages.js)

Within the ewebeditpro5 folder, open ewebeditpromessages.js.

2. Translate the text. Text that requires translation is shown below in red. The
actual file may vary from what is shown. This sample was taken from
eWebEditPro version 2.1.

Because this JavaScript file can be included on a web page with any charset
encoding, (for example, is0-8859-1, utf-8, big5), the translated text must be
ASCII, which is compatible with all encodings. The Web page encoding uses
the charset defined in a meta tag, for example, UTF-8.

<meta http-equiv=Content-Type content="text/html; charset=utf-8">

Escaping Special and Unicode Characters to ASCII

® Special characters whose code is hex 80 to hex FF must be escaped using
\XNN, where NN is the hex value. For example, 'sucon' would be 'su\xe7on’
because the '¢' character is code U+00E?7.

@ Unicode characters whose code is above hex FF must be escaped using
\UNNNN, where NNNN is the hex value. For example, the string with three
Unicode characters with codes U+65E5 U+672C U+8A9E would become
\u65e5\u672c\u8ae’.

TiP Ektron provides a Web page that escapes the characters so you do not need to
convert them by hand. See the Test Languages Web Page for details. It allows
you to translate the messages strings in a native, human-readable encoding, view
the escaped strings in the Web page, and copy them into your translated
messages file.

WARNING! Do not use the contents shown below. Start with the ewebeditpromessages.js file
provided with eWebEditPro.

// Copyright 2000, Ektron, Inc.
// Revision Date: 2001-01-30

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 211

http://www.ektron.com//support/ewebeditprokb.cfm?doc_id=1832
http://www.ektron.com//support/ewebeditprokb.cfm?doc_id=1832

Modifying the Language of eWebEditPro

/* Modify this file to set your preferred messages in the language of your choice. */

var eWebEditProMessages =

{
popupButtonCaption: "Edit"
, installPrompt: "Click OK to install eWebEditPro."
, waitingToLoad: "Waiting to load"
, loading: "Loading"
, donelLoading: "'Done loading"
, errorLoading: "Error loading"
, saving: "'Saving"
, doneSaving: "'Done saving"
, querySave: "Click OK to preserve changes when moving to another page.\nClick Cancel
to discard changes."
, confirmAway: "Any changes will be lost."
, saveFailed: "Unable to save. Continue and lose content?"
, SizeExceeded: "Content is too large to save. Please reduce the size and try again."
, clientlnstal IMessage: "
eWebEditPro is not

installed. Click to install eWebEditPro</
A>_"

, elementNotFoundMessage: "
Unable to find content
field (typically a hidden field) within a form.
Please check the following:Form
tag is requiredContent field is required and must match the name specified when creating
the editorContent field must be declared prior to creating the editorName specified:
"

, invalidFormMethodMessage: "
The form method must
be set to "post'. For example, <form method="post">. The submit will fail using
"get"._"

3

NOTE The message strings for elementNotFoundMessage and
invalidFormMethodMessage do not need to be translated. These messages are
intended for developers, not end-users.

3. Save the file as ewebeditpromessagesxx. js, where xx is the two letter
country code. The country codes are listed in "Languages Supported by
Windows” on page 215. For example, ewebeditpromessagesbg. js for
Bulgarian.

Translating the Section 508 Tables Dialog

Within the ewebeditpro5 folder, open section508tabletext.js.

2. Translate the text. Text that requires translation is shown below in red. The
actual file may vary from what is shown. This sample was taken from
eWebEditPro version 4.0.0.12.

Because this JavaScript file can be included on a Web page with any charset
encoding, (for example, iso-8859-1, utf-8, bigh), the translated text must be
ASCII, which is compatible with all encodings. The Web page encoding uses
the charset in a meta tag, for example, UTF-8.

<meta http-equiv=Content-Type content="text/html; charset=utf-8">

See Also: "Escaping Special and Unicode Characters to ASCII” on page 211

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 212

Modifying the Language of eWebEditPro

WARNING! Do not use the contents shown below. Start with the section508tabletext.js file
provided with eWebEditPro.

// Copyright 2000-2003, Ektron, Inc.
// Revision Date: 2002-Mar-06

/* Modify this file to set your preferred messages in the language of your choice. */

var Section508TableMsges =

{
LabelForm: ™Section 508 Table Properties"
, LabelHeadRows: *‘Heading Rows:*
, LabelHeadCols: '"Heading Columns:"
, LabelSummary: *Summary:"
, LabelCaption: *Caption:™
, LabelHCaption: ‘'Horizontal Caption Alignment:"

, OptionNotSet: *Not Set"

, OptionLeft: “Left™

, OptionCenter: "Center"

, OptionRight: "Right"

, LabelVCaptionAlign: "Vertical Caption Alignment:"
, OptionTop: "Top"

, OptionBottom: *Bottom"

, LabelBtnDone: "OK"

, LabelBtnCancel: "Cancel™

, MsglllegalHeadRows: *The number of Heading Rows is greater than the maximum allowed."

, MsglnvalidHeadRows: "An integer is expected as the number of Heading Rows."

, MsglllegalHeadCols: 'The number of Heading Columns is greater than the maximum allowed."
, MsglnvalidHeadCols: ™An integer is expected as the number of Heading Columns."

, MsgNoEditorforSave: "The Editor is not available. Section 508 Properties are not saved."
, MsgNoEditorforLoad: '"The Editor is not available. Section 508 Properties cannot be
retrieved. Please try again."

, MsgWarnHeadCols: ™"No Heading Columns can be set."

, LabelMax: "Max."

¥

3. Save the file as section508tabletextxx. js, where xx is the two letter
country code. The country codes are listed in "Languages Supported by
Windows” on page 215. For example, section508tabletextbg. js for
Bulgarian.

Updating ewebeditpro.js

This procedure adds the new language to the list of supported languages.
1. Browse to the ewebeditpro folder.
2. Open the ewebeditpro.js file in a text editor.

3. If needed, add the country code of the new language to the list of languages,
which occurs in the section of the file copied below. Separate each code with
a comma. Do not include spaces.

The list does not need to be in alphabetical order.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 213

Modifying the Language of eWebEditPro

IMPORTANT! If the language contains a suffix for the country code, add it to the first list with "zh-
tw". If the language is just a language code, add it to the second list with "da,de"
etc.
var strTranslatedLangCodes = "zh-tw";
ifT (strTranslatedLangCodes. indexOf(strLanguageCode) == -1)

{
strLanguageCode = strlLanguageCode.substring(0,2);
var strTranslatedLanguages = "da,de,es,fr,it,ja,ko,nl,pt,zh";
if (strTranslatedLanguages. indexOf(strLanguageCode) == -1)

4. Add the two character language code between the parentheses at the end of
this line:

eWebEditProMsgsFilename = defaultMsgsFilename(); =
defaultMsgsFilename();

For example, if the language is Spanish, you would add es:
eWebEditProMsgsFilename = defaultMsgsFilename(es);
5. Save the file. Do not rename it.

Updating ewebeditprodefaults.js

This specifies which installnowxx.htm file to open to automatically install
eWebEditPro.

1. Browse to the ewebeditpro folder.
2. Open the ewebeditprodefaults.js file in a text editor.

3. If needed, add the country code of the new language to the list of languages,
which occurs in the section of the file copied below. Separate each code with
a comma. Do not include spaces.

The list does not need to be in alphabetical order.

IMPORTANT! If the language contains a suffix for the country code, add it to the first list with "zh-
tw". If the language is just a language code, add it to the second list with "da,de"
etc.

:var strTranslatedLangCodes = "zh-tw";

if (strTranslatedLangCodes. indexOf(strLanguageCode) == -1)

{
strLanguageCode = strlLanguageCode.substring(0,2);
var strTranslatedLanguages = "da,de,es,fr,it,ja,ko,nl,pt,zh";
if (strTranslatedLanguages. indexOf(strLanguageCode) == -1)

4. Add the two character language code (as shown in red) to the following line
of code.

this.installPopupUrl = this.path + "clientinstall/" +

defaultinstallFilename(*'es'); // parameters.installPopup.url

5. Save the file. Do not rename it.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 214

Modifying the Language of eWebEditPro

Updating eweputil.js

L

Browse to the ewebeditpro folder.

Open the ewepuitil.js file in a text editor.

Find the line that includes return strLanguageCode;.

Replace strLanguageCode with the new language’s two character country
code. To find the country code, see "Languages Supported by Windows” on
page 215. For example, if the language is Spanish, the line would look like

this:
return es;

Save the file. Do not rename it.

Languages Supported by Windows

Terms on the Supported Languages Table

Identifier

An identifier is a hexadecimal value that specifies a language and country. The
identifier’s four characters appear in the name of each locale file. See Also:
"Locale Files” on page 202

Country Code

A country code is an abbreviation for a language. Some language codes include a
two-letter suffix that specifies a country.

Character Set

This is the preferred character set for each language’s encoding.

Language Identifier Language Charset
(hex) Code
Language Neutral 0x0000
Afrikaans 0x0436 af
Albanian 0x041c sq U]
Arabic 0x0401 ar iS0-8859-6 or windows-
1256
Azeri (Latin) 0x042c
Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 215

Modifying the Language of eWebEditPro

Azeri (Cyrillic) 0x082c

Basque 0x042d eu

Belarussian 0x0423 be is0-8859-5 or windows-
1251

Bulgarian 0x0402 bg iS0-8859-5 or windows-
1251

Burmese 0x0455

Catalan 0x0403 ca

Chinese (Taiwan) 0x0404 zh-tw big5

Chinese (PRC) 0x0804 zh-cn gh2312

Chinese (Hong Kong SAR, 0x0c04 zh-hk

PRC)

Chinese (Singapore) 0x1004 zh-sg

Chinese (Macau SAR) 0x1404

Croatian 0x041a hr iS0-8859-2 or windows-
1250

Czech 0x0405 cs iS0-8859-2 or windows-
1250

Danish 0x0406 da is0-8859-1 or windows-
1252

Dutch (Netherlands) 0x0413 nl is0-8859-1 or windows-
1252

Dutch (Belgium) 0x0813 nl-be

English (United States) 0x0409 en-us iS0-8859-1 or windows-
1252

English (United Kingdom) 0x0809 en-gb

English (Australian) 0x0c09 en-au

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 216

Modifying the Language of eWebEditPro

English (Canadian) 0x1009 en-ca

English (New Zealand) 0x1409 en-nz

English (Ireland) 0x1809 en-ie

Estonian 0x0425 et i50-8859-4 or windows-
1257

Faeroese 0x0438 fo

Farsi 0x0429 fa

Finnish 0x040b fi i50-8859-1 or windows-
1252

French (Standard) 0x040c fr is0-8859-1 or windows-
1252

French (Belgian) 0x080c fr-be

French (Canadian) 0x0c0c fr-ca

French (Switzerland) 0x100c fr-ch

French (Luxembourg) 0x140c fr-lu

German (Standard) 0x0407 de is0-8859-1 or windows-
1252

German (Switzerland) 0x0807 de-ch

German (Austria) 0x0c07 de-at

German (Luxembourg) 0x1007 de-lu

German (Liechtenstein) 0x1407 de-li

Greek 0x0408 el is0-8859-7 or windows-
1253

Hebrew 0x040d he iS0-8859-8 or windows-
1255

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 217

Modifying the Language of eWebEditPro

Windows 2000: Hindi. This is 0x0439 hi

Unicode only.

Hungarian 0x040e hu is0-8859-2 or windows-
1250

Icelandic 0x040f is

Indonesian 0x0421 in

Italian (Standard) 0x0410 it is0-8859-1 or windows-
1252

Italian (Switzerland) 0x0810 it-ch

Japanese 0x0411 ja shift_jis
(An alternative is is0-2022-
jp or euc-jp)

Korean 0x0412 ko euc-kr
(An alternative is is0-2022-
kr)

Korean (Johab) 0x0812 ko

Latvian 0x0426 Iv iS0-8859-4 or windows-
1257

Lithuanian 0x0427 It iS0-8859-4 or windows-
1257

Macedonian 0x042f mk iS0-8859-5 or windows-
1251

Malay (Malaysian) 0x043e ms

Norwegian 0x0414 no iS0-8859-1 or windows-
1252

Polish 0x0415 pl iS0-8859-2 or windows-
1250

Portuguese (Brazil) 0x0416 pt-br

Portuguese (Standard) 0x0816 pt is0-8859-1 or windows-
1252

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 218

Modifying the Language of eWebEditPro

Romanian 0x0418 ro is0-8859-2 or windows-
1250

Russian 0x0419 ru is0-8859-5 or windows-
1251

Serbian (Cyrillic) 0x0cla sr is0-8859-5 or windows-
1251

Serbian (Latin) 0x081a sr

Slovak 0x041b sk iS0-8859-2 or windows-
1250

Slovenian 0x0424 sl iS0-8859-2 or windows-
1250

Spanish (Traditional Sort) 0x040a es is0-8859-1 or windows-
1252

Spanish (Mexican) 0x080a es-mx

Spanish (Modern Sort) 0x0cOa es

Spanish (Guatemala) 0x100a es-gt

Spanish (Costa Rica) 0x140a es-cr

Spanish (Panama) 0x180a es-pa

Spanish (Dominican Republic) Ox1cOa es-do

Spanish (Venezuela) 0x200a es-ve

Spanish (Colombia) 0x240a es-co

Spanish (Peru) 0x280a es-pe

Spanish (Argentina) 0x2c0a es-ar

Spanish (Ecuador) 0x300a es-ec

Spanish (Chile) 0x340a es-cl

Spanish (Uruguay) 0x380a es-uy

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 219

Modifying the Language of eWebEditPro

Spanish (Paraguay) 0x3c0a es-py

Spanish (Bolivia) 0x400a es-bo

Spanish (El Salvador) 0x440a es-sv

Spanish (Honduras) 0x480a es-hn

Spanish (Nicaragua) 0x4c0a es-ni

Spanish (Puerto Rico) 0x500a es-pr

Sutu 0x0430 sx Sutu

Swabhili (Kenya) 0x0441

Swedish 0x041d SV iS0-8859-1 or windows-
1252

Swedish (Finland) 0x081d sv-fi

Thai 0x041e th iS0-8859-11 or windows-
874

Turkish 0x041f tr i50-8859-9 or windows-
1254

Ukrainian 0x0422 uk is0-8859-5 or windows-
1251

Urdu (Pakistan) 0x0420 ur

Urdu (India) 0x0820

Uzbek (Latin) 0x0443

Uzbek (Cyrillic) 0x0843

Vietnamese 0x042a Vi windows-1258

Working with non-English Content
IMPORTANT! Editor content can be in any language supported by the browser, even if the

system does not support applications in that language.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 220

Modifying the Language of eWebEditPro

eWebEditPro content can be in any language supported by the browser, which is
largely controlled by Windows regional settings. The content can contain multiple
languages simultaneously. The HTML languages sample (http://1ocalhost/
ewebeditpro5/samples/html/languages/languages.htm)
demonstrates a page with several languages.

Accented Characters

For accented characters, the user can select from the list of special and extended
characters available on the standard toolbar (see below) or type from the
keyboard.

=E=EEe

p@ TM £

-

3

Lyl $ [T T TE T 1R n i

o
4

Also, non-English keyboards usually have the characters printed.

You can enter special characters with an English keyboard (using Alt keys) using
the IME (input editor). See Windows Control Panel > Regional Options > Input
Locales.

Using the Languages Sample

The following eWebEditPro sample screen illustrates how the locale file affects
the editor.

Start > Programs > Ektron>ewebeditpro5 > Samples > HTML Samples >
Languages

Select the language of your choice. Then, move the cursor over any toolbar
button and notice that the tooltip appears in the selected language. Also, if you
click an icon that displays a dialog box (such as Insert Picture), the dialog box
appears in the selected language.

Displaying Menus and Dialogs in a non-European Language

If you specify an Asian or Middle Eastern language locale for eWebEditPro, and
you are running a European (for example, English) version of Windows, the non-
European characters may appear as question marks (?) instead of the ideogram.

Similarly, accented Latin (that is, European) characters may appear without their
accent marks on an Asian version of Windows.

These problems occur because the language’s character set is not loaded in the
client PC’s Windows operating system. Any Unicode character that does not have

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 221

Modifying the Language of eWebEditPro

a corresponding character in the character set (that is, code page table) appears
as a question mark (?).

How to Fix in Windows XP and 2000

To display eWebEditPro menus and dialogs in a non-European language on a
European version of Windows 2000 or XP, set the system default language to the
language you wish to display. To do this for Windows 2000, follow these steps.

1. Open the Control Panel.
2. Open Regional Options.

3. Click the General tab. The lower half of the dialog displays the languages
currently configured for your system.

Regional Options

Numbersl Cunencyl Time I Date I It analesl

— Settingz for the current uzer

tdany programs suppart international settings for numbers, curencies,
times, and dates. Set the locale in order to uge the standard settings.

Your locale [location]:

E nglizh [Lnited St

4 .
— Language zettings for the system
Your gpztem iz configured to read and write documents in multiple

languages.
O &sabic ﬂ
O &menian
O Ealtic
O Central Europe
O Cwilic: =]

Set default... | Advanced... |
QK I Cancel | S |

4. Check the language you want to use. You may be prompted for the Windows
CD-ROM to install language files.

NOTE Your locale, in the top half of the dialog, does not affect the default language.

5. Click the Set default button. The "Select System Locale" dialog appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 222

Modifying the Language of eWebEditPro

Select System Locale K E

The system lozale enables applications bo dizplay menus and
dialogz in their native language. ‘Windows will uze the code page
and font zettingz of thiz language. Menus and dialogz of Windows
will niot be affected.

Select the appropriate lozale.

Japanese j

6. Select a language from the list. For example, Korean, as shown here.

7. Click OK to close the dialog boxes. You are probably prompted to restart
Windows.

How to Fix in Windows NT, Me, 98, 95

Older versions of Windows do not support all languages. To display a language,
you need a version of Windows localized for that language. For instance,
Japanese Windows is required to view eWebEditPro menus and dialogs in
Japanese.

NOTE The content in the editor does not have this limitation, only the menus and
dialogs. The languages supported in the editor content are only limited by the
browser.

Setting the Language of Spell Checking
There are three ways that you can specify which language to use when checking
spelling.
® Set the language in Microsoft Word, version 2000 or later. To do this, open
Word and select Tools >Language > Set Language.

® Set the language in the configuration XML data using the langid attribute of
the <spellcheck> element. For more information, see "langid” on page 344.

® Specify the language in JavaScript by passing IData parameter in the
ExecCommand method. (For more information, see "Creating a Custom
Command” on page 215.)

Modifying Standard Text (including English)

Most of this chapter explains how to display eWebEditPro’s standard text in a
non-English language. However, you may want to modify the standard text of any
language, including English, for several reasons:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 223

Modifying the Language of eWebEditPro

® the text is an error message, and you want to provide organization-specific
directions

® you want to brand the product with your corporate 1D

® you want the spelling to follow regional conventions. For example, in British
English, colour is the correct spelling.

To modify the eWebEditPro’s standard text, read the table below to determine the
language category that you are modifying.

To modify text in this language Read this section

American English "Modifying American English
Text” on page 225

Any other language into which "Modifying the Standard Text of
eWebEditPro is translated a Translated Language” on
page 225

Any other Windows-supported language "Modifying the Standard Text of
a Windows-Supported
Language” on page 226

Location of Translated Strings

The user interface text resides in these files.

Type of string Folder/File name
Most system text, including ewebeditpro5\
* tooltip text localelanguage identifierb.xml

® menu options
@ (dialog box field labels and responses

® messages

® colors

Status bar text and system messages, especially ewebeditpro5\

those concerning loading and saving a document ewebeditpromessageslanguage
code.js

Automatic client installation Web page ewebeditpro5\clientinstall\

installnowlanguage code.htm

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 224

Modifying the Language of eWebEditPro

Type of string Folder/File name

HTML page that prompts user to install ewebeditpro5\clientinstall\

eWebEditPro introlanguage code.htm

The Section 508 table dialog ewebeditpro5\
section508tabletextlanguage
code.js

Dialogs that appear when user launches client.exe | Contact Ektron for help translating

Modifying American English Text

IMPORTANT! Since the default language is American English, eWebEditPro displays system
text in English but does not refer to the American English locale file
(locale0409b.xml) unless you explicitly list it in ewebeditprodefaults.js.

To modify English system text, follow these steps.
1. Assign the American English locale file in ewebeditprodefaults.js.

— Navigate to the ewebeditpro folder.
— Open the ewebeditprodefaults.js file.
— Find the this.locale variable.

— Change the variable so that it refers to the American English locale file. It
should look like this: this.locale = this.path +
"locale0409b.xml"";

2. Refer to "Location of Translated Strings” on page 224 to determine which file
to edit.

3. Open the appropriate file, change the text, and save the file. To edit the locale
file, edit locale0409b.xml. To edit any other system file, edit the generic
version, that is, the file without a two character country code, such as
ewebeditpromessages.js.

For example, to change tooltip text, open locale0409b.xml, find the existing
text, and replace it with new text.

Modifying the Standard Text of a Translated Language

This section assumes that eWebEditPro is already set to a translated language.
For instructions on how to do this, see "Displaying the User Interface in a
Translated Language” on page 204.

1. Referto "Location of Translated Strings” on page 224 to determine which file
to edit.

2. Edit the version of the file that includes the two-character code of the non-
English language. For example, if the language is Spanish and you want to
modify tooltip text, open locale040ab.xml, modify and save.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 225

Modifying the Language of eWebEditPro

Modifying the Standard Text of a Windows-Supported Language

"Translating the User Interface to a Windows-Supported Language” on page 205
explains how to translate the text in all of the system files. To modify any of this
text, follow the appropriate instructions for translating and simply change the
translation string.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 226

Customizable JavaScript Files

eWebEditPro provides five JavaScript files that let you customize many
attributes of the HTML element used to place the ActiveX control in a Web
page. The files let you customize how the editor appears and functions on a
Web page.

The customizable files are

® ewebeditpro.js

® ewebeditprodefaults.js

® ewebeditpromessages.js
® ewebeditproevents.js

® ewebeditpromedia.js

This section describes each file.

The ewebeditpro.js File

The ewebeditpro.js file has one element, described below.

Element Description

eWebEditPro Enter or edit the path to the directory to which
Path eWebEditPro is installed.

The ewebeditprodefaults File

The ewebeditprodefaults.js file has many attributes. Because the following
attributes are also properties of the Parameters Object, they are described in
the sections listed below.

® “Property: clientlnstall” on page 130

® ‘“Property: editorGetMethod” on page 144
® ‘“Property: embedAttributes” on page 130
® “InstallPopup Object” on page 10

® ‘“Property: maxContentSize” on page 130
® “Property: objectAttributes” on page 131
® “Event: onblur” on page 149

® ‘“Event: ondblclickelement” on page 148

® ‘“Event: onexeccommand” on page 148

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 227

Customizable JavaScript Files

“Event: onfocus” on page 148
“Property: path” on page 131

“InstallPopup Object” on page 10

The following attributes are documented in “Active X Properties” on the pages
listed below.

“Property: BaseURL” on page 112
“Property: CharSet” on page 122
“Property: Config” on page 122
“Method: HideAbout” on page 73
“Property: License” on page 124
“Property: Locale” on page 124
“Property: StyleSheet” on page 125
“Property: Title” on page 125

wddx (for compatibility with Release 1.8)

The onexeccommand attribute is described in "The ewebeditproevents File” on
page 231.

As described in "Changing Parameter Values” on page 566, you would make
changes to this file that apply to all occurrences of the editor. To change any of
these values for a single occurrence of the editor, you would insert JavaScript
onto the page that invokes the editor.

The ewebeditpromessages File

The attributes in the ewebeditpromessages.js file determine the text of buttons
and popup messages that appear when using eWebEditPro.

Attribute

Determines the text that appears

Default Message

popupButtonCaption

On the button that launches the popup
window that contains eWebEditPro.

Edit

installPrompt

In a dialog box when the client installation
is needed.

Click OK to install eWebEditPro

waitingToLoad

In the status bar while the editor is
waiting to load.

Waiting to load

loading

In the status bar while the editor is
loading.

Loading

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 228

Customizable JavaScript Files

Attribute

Determines the text that appears

Default Message

doneLoading

In the status bar when the editor finishes
loading.

Done loading

errorLoading

In the status bar when the editor
encounters an error and cannot load.

Error loading

(used only with
Internet Explorer)

another page before the content is
saved. (Note: The content is saved when
the user clicks the submit button.)

saving In the status bar when the editor is saving Saving
content.
doneSaving In the status bar when the editor has Done saving
saved content.
guerySave In a dialog box if the user moves to Click OK to preserve changes when

moving to another page.
Click Cancel to discard changes.

NoOTE

This message only appears when
using Internet Explorer.

See Also: “Disabling the "Click OK
to Preserve Changes" Message” on
page 230.

confirmAway

(used only with
Internet Explorer)

In a dialog box if the user indicates that
he/she does not want to save changes.

Any changes will be lost.

saveFailed

In a dialog box if the user clicked save
but the editor cannot save the content.

Unable to save. Continue and lose
content?

sizeExceeded

In a dialog box if the amount of content
that user wants to save exceeds the
maxContentSize.

Content is too large to save. Please
reduce the size and try again.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 229

Customizable JavaScript Files

Attribute

Determines the text that appears

Default Message

clientinstallMessage

If the user opens a page with the editor
using Netscape when eWebEditPro is
not yet installed. It also appears if the
editor could not be properly initialized for
some reason, such as security settings
prevented the installation of the CAB
files.

The message appears below the textarea
element that appears in place of the
editor and prompts the user to install the
client software.

<font face="Arial" size=1
color=red>

eWebEditPro is not installed.
Click to

<A href="" +

clientlnstal IMessage + "''>
install eWebEditPro
_

elementNotFoundMes
sage

When eWebEditPro cannot find the
named content element.

The message appears below the editor.

“
<font face="Arial" size=2
color=red>

Unable to find content
field (typically a hidden
field) within a form.

Please check the
following:

Form tag is required
Content field is required
and must match the name
specified when creating the
editor

Content field must be
declared prior to creating the
editor

Name specified: "

invalidFormMethodMe
ssage

When the form element's method is not
set to post.

"
<font face="Arial" size=2
color=red>

The form method must be set
to "post".

For example, <form
method="post">. The submit
will fail using "get".</
font>"}

Disabling the "Click OK to Preserve Changes" Message

If a user attempts to move to another Web page, the Click OK to preserve
changes when moving to another page. Click Cancel to discard changes

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

message appears.

If you want to suppress the message, add one of following JavaScript lines to a

page with the editor.

eWebEditPro.actionOnUnload = EWEP_ONUNLOAD_SAVE

or

eWebEditPro.actionOnUnload = EWEP_ONUNLOAD_NOSAVE

230

Customizable JavaScript Files

The ewebeditproevents File

When the user presses a button on the toolbar or double-clicks an element (for
example, a hyperlink or image) in the content, an event is raised. When the event
fires, it can run a JavaScript function.

The ewebeditproevents.js file contains JavaScript event handler functions that
perform actions. These actions could include inserting HTML into the content (for
example, the trademark symbol) and opening a window to a hyperlink that was
double-clicked.

The ewebeditproevents.js file can call the following event handler functions that
you can define in a custom JavaScript file. In this way, you can customize what
happens when the event fires.

Event Determines How to Respond When

onDblClickElemen A user double-clicks.
tHandler

onDblClickHyperli A user double-clicks on a hyperlink.

nkHandler See Also: “Determining which Fonts, Font Sizes, and
Headings are Available” on page 182

onExecCommand A toolbar button is pressed or the user selects an item
Handler from the context-sensitive menu.

To add your own commands, define one or both of the following.

function eWebEditProExecCommand(sEditorName, strCmdName, strTextData, IData) { }
eWebEditPro.onexeccommand = your_custom_event_handler;

For more information, see “Event Handler Functions” on page 236.
To add your own media file handler, define:
function eWebEditProMediaSelection(sEditorName) { }

For more information, see “The ewebeditpromedia File” on page 232.

To add your own double-click element handlers, define one or more of the
following:

function eWebEditProDbIClickElement(oElement) { }
function eWebEditProDbIClickHyperlink(oElement) { }
function eWebEditProDblClicklmage(oElement) { }

function eWebEditProDblIClickTable(oElement) { }
eWebEditPro.ondblclickelement = your_custom_event_handler;

For more information, see “Event Handler Functions” on page 236.

Add your custom JavaScript file to the list in ewebeditpro.js, as shown below.

var eWebEditProlncludes = [
"ewebeditproevents.js",
"ewebeditprodefaults.js",
"ewebeditpromedia.js',

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 231

Customizable JavaScript Files

eWebEditProMsgsFilename,
"ewep.js',
“mycustomevents. js'];

The ewebeditpromedia File

This file lets you customize the external media file selection process. It is
referenced during media selection to let the user insert (and possibly upload) an
image into the editor.

This file contains only one function.

function eWebEditProMediaSelection(sEditorName)

In the seditorName parameter, enter the name of the editor that calls the
function. (See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.)

This function is called when an external image selection mechanism is specified
in the transport type property of the mediafi les feature in the config.xml
data. The function determines which page to load. This page should perform the
media upload plus any other custom operations, such as login or advertisements.
Below is an example entry in the configuration data.

<mediafiles>
<transport type="coldfusion/database/mediamanager.cfm">

The above entry causes the page coldfusion/database/
mediamanager .cfm to load during the image selection process.

For more information, see “Customizing the Popup Button” on page 189.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 232

Client Installation Pages

The first time a user on a client PC accesses a Web page using Internet
Explorer that has a new or upgraded version of eWebEditPro, an.htm page
appears. The page provides information about the installation and prompts
the user to continue with the installation or cancel.

’3 Installing e ebEditPro - Microsoft Internet Explorer

J File Edit “iew Favorites Toolz Help

eWebEditPro
Automatic
Download and
Installation
The page you are trying to view contains
Ektron's eWebEditPro editor. It will appear
within vour browser, It allows you to enter

content for web pages as easily as using
a word processaor,

Before vou can use eWebEditPro, it must
be downloaded into your browser, When

vou click the Install Now button at the =
4] - - S | _rl_l
|@ Dane I_I_ Local intranet o

By default, this .htm page is named intro.htm, and is installed in /
ewebeditpro5/clientinstall/intro._htm.

Another .htm page, installnow.htm (installed into the same directory) is
invoked from intro.htm. installnow.htm displays Please wait while

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 233

Client Installation Pages

eWebEditPro is being installed, then notifies the user whether or not the
installation was successful.

3 ewebE ditPro Installation - Microsoft Internet Explorer

J File Edit “iew Fawvoites Toolz Help

eWebEditPro
Automatic
Download and Installation

If successful, the words "Installation complete” will appear in the bax below,

H%E\ﬁ|ﬂﬂ|“&°m|ﬁ%%$|— |“Eﬂ|“nbsp@®mi -

J_INu:urmaI = Times Mew FRoman, "= 3[12 pt) - fl_| B r 1 |1éb: e JJEE

Installation complete.

|@ Dione loading I_ I_ Local intranet

Customizing the Client Installation Pages

If you want to customize these .htm pages (for example, to change the text), save
the file under a different name and make changes to the copy. Otherwise, future

upgrades will overwrite your changes.

If you change the intro.htm file, you also need to change the reference to the file
and pathway in the ewebeditprodefaults.js file. In that file, the intro.html page is

defined at the this.instal IPopupUrl property, as illustrated below.

function eWebEditProbDefaults()
{

this.installPopupUrl = this.path + "clientinstall/intro.htm";

If you want to display the intro.htm page before loading a page that includes

eWebEditPro, you may call the eWebEditPro.autolnstal lIExpected()

method to determine if the client computer would automatically install
eWebEditPro.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

234

Client Installation Pages

To popup a window with the intro.htm page in JavaScript, call
eWebEditPro. installPopup.open();

For additional JavaScript methods and properties, see “InstallPopup Object” on
page 10.

Disabling the Installation Pages
If you want to disable the client installation pages, you have two choices.
® In ewebeditprodefaults.js, set this. instal IPopupUrl = "'

® |n JavaScript, set eWebEditPro.parameters.installPopup = null;

What Happens When Auto Install Fails or is Cancelled

If the auto install is cancelled or fails, it only prompts again if one of three things
happens.

® the user clicks the message Try to automatically download and install
(This message appears below the textarea field on the same line that
displays eWebEditPro is not installed. Click to install eWebEditPro.)

* anew version of eWebEditPro is available on the server

® acookie installed to suppress this message expires (by default, after 3 years)

The Try to automatically download and install message is defined in
ewebeditpromessages.js (clientAutolnstallMessage) and, so, is customizable.

If you want to disable this feature using JavaScript, set
eWebEditPro.autolnstallCookie = null before creating an instance of
the editor.

You can change the cookie’s expiration date using JavaScript. To do this, before
creating an instance of the editor, set
eWebEditPro.autolnstallCookie.expiresInSeconds = n (wherenis
the number of seconds before expiration).

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 235

JavaScript Objects

This section describes the following topics.

® the JavaScript object model

® the eWebEditPro JavaScript object’s properties, methods, and events
® event handler functions

® double-click element handlers

® the eWebEditProExecCommandHandlers array
® the toolbar reset command

® reacting to the creation of a toolbar

® the redisplay toolbars command

® the instance object

® the parameters object

® the eWebEditProUtil JavaScript Object

The JavaScript Object Model

For a diagram of the JavaScript object model, see “eWebEditPro Object Model”
on page 2.

Examples

var oMedia = eWebEditPro.instances[i].editor.MediaFile();
eWebEditPro.parameters.buttonTag.value = "Edit this section™;

JavaScript lets you add custom properties dynamically at run-time. In contrast,
ActiveX control objects cannot be extended in this way.

The instance JavaScript object can be used to store data associated with a given
editor on a Web page. For example,

eWebEditPro. instances[i].customProperty = "myvalue';

JavaScript Object Properties, Methods and Events
See "eWebEditPro Object” on page 4

Event Handler Functions
® "Event: eWebEditProExecCommand” on page 153
® "Event: eWebEditProReady” on page 153
® “Event: eWebEditProMediaSelection” on page 154

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 236

JavaScript Objects

Double-Click Element Handlers
To add your own double-click element handler, define a JavaScript function in
your Web page to run as shown below.

eWebEditProDbIClickElement(oElement)
{

return true or false

}

The eWebEditProDblClickElement function runs when certain elements are
double-clicked. It may be easier, however, to define the applicable handler
function for a specific object.

The hyperlink, image, and table element objects have their own functions that run
when they are double-clicked.

See Also:

® "Event: eWebEditProDbIClickElement” on page 154
® "Event: eWebEditProDbIClickHyperlink” on page 155
® "Event: eWebEditProDblClickimage” on page 155

® "Event: eWebEditProDblClickTable” on page 155

The eWebEditProExecCommandHandlers Array

The eWebEditProExecCommandHandlers array helps you add custom
commands or define command event handlers for standard commands. You can
define the code to process a command in customevents.js or the page that
displays the editor.

For example (taken from editorwithstyle.htm),

function setStyleSheet(sEditorName, strCmdName, strTextData, IData)

{
var strStyleSheet = myStyleSheets[strCmdName];
if ("string” == typeof strStyleSheet)
{

eWebEditPro. instances[sEditorName].editor.setProperty(''StyleSheet", strStyleSheet);
bStylesheetDisabled = false;

3

3

eWebEditProExecCommandHandlers[“jsstyledefault'™] = setStyleSheet;
eWebEditProExecCommandHandlers["jsstylel™] = setStyleSheet;
eWebEditProExecCommandHandlers["jsstyle2'"] = setStyleSheet;
eWebEditProExecCommandHandlers["jsstyleparagraph'™] = setStyleSheet;
eWebEditProExecCommandHandlers["jsstylenone™] = function(sEditorName, strCmdName,

strTextData, IData)

{

eWebEditPro. instances[sEditorName].editor.disableAllStyleSheets();
bStylesheetDisabled = true;

3

eWebEditProExecCommandHandlers["jshighlight™] = function(sEditorName, strCmdName,

strTextData, IData)

{

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 237

JavaScript Objects

eWebEditPro. instances[sEditorName].editor._ExecCommand(*'cmdselstyle', "_highlight", 0);

}

Note that each array entry defines a handler for one command. If more than one
command uses the same function, set each array entry to the same function (for
example, setStyleSheet). The syntax is:

eWebEditProExecCommandHandlers[command_name] = your_handler_function

The handler must be a function with the same parameters as
eWebEditProExecCommand, namely,

function(sEditorName, strCmdName, strTextData, IData)

ExecCommandHandlersArray Parameters

Parameter

Type

Description

sEditorName

String

The name of the occurrence of eWebEditPro. To access the
eWebEditPro methods, use

eWebEditPro. instances[sEditorName].editor.

See Also: “Appendix A: Naming the eWebEditPro Editor” on
page 576

Note: If your Web server is running ASP.NET, use this syntax:
eWebEditPro. instances[sEditorName].editor

strCmdName

String

The name of the JavaScript command that was just executed (if a
standard command) or to be executed (if a custom command).
Standard commands begin with cmd; custom commands begin with
is.

An example of a JavaScript function that executes after a standard
command executes is checking spelling within all instances of the
editor on a page. If the user presses the spelicheck button in one
editor, he is prompted to continue to the next editor. If confirmed, the
command is sent to the next editor on the page and will loop back to
the first editor on the page.

strTextData

String

A string that may contain text data related to the command. Typically
not used.

IData

Long

A long integer value that may contain numeric data related to the
command. Typically not used.

Parameter Requirements for Commands

Most commands do not require parameters. For example, cmdbold bolds (or
unbolds) selected text, ignoring the strTextData and IData parameters.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 238

JavaScript Objects

For a list of standard commands and their parameters, see "Standard Commands”
on page 199. You can also create custom commands to be executed
programmatically. See "Custom Commands” on page 215.

The Toolbar Reset Command

Name: toolbarreset

Parameters:

Parameter | Type Value if toolbar is freshly Value if toolbar is
loaded from config.xml, generated by a
not loaded from a saved reset
configuration

strTextData string NewLoad FullReset

IData long 1 0

Description: Resets the toolbar. For a complete explanation, see "Reacting to
the Initialization of a Toolbar” on page 239.

Reacting to the Initialization of a Toolbar

When the Event is Sent to the Script

The ontoolbarreset event is sent under either of these conditions.

® When the editor first appears, a new toolbar is loaded. If no saved
customization is found, the configuration data is read to build a fresh toolbar.

Next, the ontoolbarreset event is sent to allow the script to add commands to
the toolbar.

® When the user presses the Reset button on the Customize dialog, the toolbar
is reset. When this happens, all old customizations are discarded, and the
configuration data is read to create a new toolbar. At this time, the script can
add commands by reacting to the ontoolbarreset event.

Script Reacting to a Toolbarreset Command

The ontoolbarreset event can be sent to a script using the addEventHandler
method or the eWebEditProExecCommandHandlers array. If the scripting adds
any buttons to the toolbar, the new toolbar configuration is saved in the user's
customization settings, if allowed. (See “Letting Users Customize the Toolbar” on
page 254.)

For example:

eWebEditPro.addEventHandler(*'ontoolbarreset", '"loadStyleSheet(this.event.srcName)');
eWebEditPro.create(*'"MyContentl™, "100%", 400);

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 239

JavaScript Objects

Using Toolbarreset to Reset Customization

The toolbarreset command can be sent by a script or defined in the configuration
data when you want to quickly reset the toolbar features.

Script Implementing a Toolbarreset Command

You can use the toolbarreset command to reset a user’s customization to a new
XML configuration definition, even without changing the customization name in
the configuration data.

To do this, save a cookie to the user's system. The script can check to see if the
customization has happened. If it has not, the script could call the toolbarreset
command to reset the named customization to the new XML definition. Then, the
script could use the cookie to record that the update was done.

Implementing toolbarreset as a Toolbar Button

In the configuration data, you can assign a button to the toolbarreset command. If
you do, the command executes when the user clicks the button. The command is
passed on to the script after it executes, just as with standard commands.

No icon is assigned to the event, so you can choose any standard image. (See
“Button Images” on page 299.)

WARNING! The toolbarreset command would be a dangerous toolbar button. The user could
accidentally click it and reset everything. You may prefer to define your own
external command, such as "jstoolbarreset”, and implement it in the scripting
instead of defining the command as a standard button. In this way, you can
interact with the user appropriately and then send the ontoolbarreset event to the
editor.

The Redisplay Toolbars Command

Name: redisplaytoolbars
Parameters: None

Description: Displays, or unhides, all toolbars. This command is only useful if the
user removes all menus and cannot customize to get them back.

This command appears as the Restore All Menus item on the context menu
only if the user cannot customize toolbars and the user has removed all menus
from view.

See Also: "Letting Users Customize the Toolbar” on page 254

The Instance Object

The instance object is accessed via the instances collection of the eWebEditPro
object. For example:

var objlInstance = eWebEditPro.instances["'MyContentl']

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 240

JavaScript Objects

This instance object has properties, methods, and events. You can also access
the instancetypes array.

For documentation of the methods, properties, and events, see "Instances Object”
on page 9.

The onerror Event
Note that, for the instance object’s onerror event,
® usually only the source property is available
® the event only fires if the save method fails
If the status of the eWebEditPro object is EWEP_STATUS_SIZEEXCEEDED,
two additional event properties are available to help troubleshoot the error.
® contentSize - the number of characters in the content

® maxContentSize - the maximum number of characters permitted, as
specified by the maxContentSize parameter (See “Property:
maxContentSize” on page 130.)

Here is an example of how to use these properties.

function myOnErrorHandler()

{
iT (EWEP_STATUS_SIZEEXCEEDED == this.status && ''save" == this.event.source)
{
var strMsg = "HTML content size (in chars): ' + this.event.contentSize + "
Maximum: " + this.event.maxContentSize;
alert(strMsg);
3
}

eWebEditPro. instances.MyContentl.onerror = myOnErrorHandler; //

Note that you cannot use .. .onerror = "myOnErrorHandler()"; .

The instanceTypes Array

You can list all possible editor types by accessing the eWebEditPro JavaScript
Object's instanceTypes array. For example:

document.write("Instance Types:
");
for (var i1 = 0; i1 < eWebEditPro.instanceTypes.length; i++)

{
}

document.write("' " + eWebEditPro. instanceTypes[i].type + "'
");

Also, you can use the instanceTypes Array to determine which type of editor to
create. For example, to prevent the ActiveX-based editor from being created,
assign a false value to this syntax:

instanceTypes["'activex'] . isSupported
If set to true, ActiveX is supported.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 241

JavaScript Objects

The Parameters Object

The parameters object is used to set parameters prior to creating an instance of
the editor. This is a property of the eWebEditPro object (for example,
eWebEditPro.parameters).

See Also: “Parameters Object” on page 7

Use the parameters object to change default values for a particular instance of an
editor. To change the default values for all instances of the editor, change the
value in ewebeditprodefaults.js.

The names of most parameters match the names in defaults.js. The different ones
are listed below.

NOTE It is important to retain the case (upper or lower) of the letters when changing a
parameter value.

default.js parameters.

buttonTagStart .buttonTag.start

buttonTagEnd .buttonTag.end

popup* .popup.* (the first letter after a
popup becomes lowercase)

For a complete list of parameters and their default.js values, see “Customizing
the Popup Button” on page 189.

Parameters Object Properties

These properties are the same as those in ewebeditprodefaults.js. In fact,
ewebeditprodefaults initializes the parameters object.

The following parameters are part of the ActiveX control. Go to the listed page
numbers to read about them.

® “Property: hideAboutButton” on page 124
® “Property: Config” on page 122

® “Property: BaseURL” on page 112

® “Property: CharSet” on page 122

® “Property: Title” on page 125

® “Property: bodyStyle” on page 121

For additional Parameters Object properties, methods and events that are not part
of the ActiveX control, see “Parameters Object” on page 7.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 242

JavaScript Objects

NOTE Onblur, ondblclickelement, onexeccommand, and onfocus are events raised by
the ActiveX control, not the parameters object. But you set them using the
parameters object -- you cannot set them using the ActiveX control. As a result,
they are documented as properties of the parameters object used to assign
JavaScript that executes when the ActiveX control's event fires.

Installation Popup Window Defaults
See “InstallPopup Object” on page 10.

Popup Window Defaults

These defaults determine the attributes of the button that launches the popup
window.

Examples

<script language="JavaScript'>
var strhref = "JavaScript:";
it (eWebEditPro.isNetscape)

{

}

strhref += "eWebEditPro.edit(\"MyContentl1\')";

eWebEditPro.parameters._buttonTag.start = "<img alt=Edit width=150
height=60 src=button.gif";

eWebEditPro.parameters.buttonTag.value = ""';
eWebEditPro.parameters.buttonTag.end = '">";
</script>

See Also: “Popup Object” on page 11

eWebEditProUtil JavaScript Object

The eWebEditProUtil JavaScript object offers utility functions. A file, ewepultil.js,
offers helpful functions and properties by way of the eWebEditProUtil JavaScript
object.

You can use the eWebEditProUtil object in a Web page that includes
ewebeditpro.js or eweputil.js.

® Pages that display the editor must include ewebeditpro.js

® Popup pages that do not display the editor but access it must include
eweputil.js to use the eWebEditProUtil object

To review a sample that uses eWebEditProUtil, see formelementinsert.htm,
located in the eWebEditPro folder.

For a page that does not display the editor, add the following include to create
eWebEditProUtil.

<script language="JavaScriptl.2" type="text/javascript" src="eweputil.js'"></script>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 243

JavaScript Objects

The eWebEditProUtil JavaScript object has several properties and methods. To
learn about them, see "eWebEditProUtil Object” on page 4.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 244

ActiveX Control

Web masters can exert control over eWebEditPro’s functionality and content
through modifying the ActiveX control properties and methods.

This section explains the properties, methods and events of the eWebEditPro
ActiveX control. It covers the following topics.

® Accessing the ActiveX Control

® ActiveX Properties, Methods and Events

Accessing the ActiveX Control Using JavaScript

There are several ways to access the eWebEditPro ActiveX control using
JavaScript. Choose the methods that are most convenient for your situation.

Do not confuse the ActiveX control with the eWebEditPro JavaScript object and
the Instance JavaScript object. The JavaScript objects wrap the ActiveX control,
making it very easy to integrate into a Web page. Without them, a developer
would need to write the integration code that moves content in and out of the
editor, detects the browser, and displays a textarea field if the ActiveX control is
not supported.

See "ActiveX Properties, Methods and Events” on page 246 to learn about
methods, properties, and events associated with the ActiveX control.

See "JavaScript Objects” on page 236 to learn which methods, properties and
events are associated with JavaScript objects.

eWebEditPro JavaScript object

The eWebEditPro JavaScript object is accessed directly in JavaScript. It is a
single object that is automatically created when a Web page includes the
ewebeditpro.js file.

IMPORTANT! The eWebEditPro JavaScript object is not the ActiveX control. It is required to
access the ActiveX control, but the ActiveX methods (for example, pasteHTML)
are not methods of the eWebEditPro JavaScript object.

<script language="JavaScriptl.2">
eWebEditPro
</script>

See Also: "eWebEditPro Object” on page 4

eWebEditPro ActiveX control

Below are examples how to access the eWebEditPro ActiveX control in
JavaScript. In these examples

® the name of the editor is "MyContent1"

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 245

ActiveX Control

® the JavaScript variable 'sEditorName' is presumed to hold the name of the
editor, as in seditorName = "MyContentl"

® the JavaScript variable 'i' is presumed to be a valid numeric index
<script language="JavaScriptl.2">

eWebEditPro. instances.MyContentl.editor
eWebEditPro["MyContentl™]

eWebEditPro. instances[sEditorName].editor
eWebEditPro. instances.MyContentl.editor
eWebEditPro. instances["MyContentl'] .editor
eWebEditPro. instances[sEditorName].editor
eWebEditPro. instances[0] .editor
eWebEditPro. instances[i].editor

</script>

See Also:

® "Property: instances collection” on page 140 for more on the instances array

® "eWebEditPro ActiveX Control Object” on page 13

Instance JavaScript object

NoOTE

The Instance JavaScript object is actually an array of objects. Each instance of
the editor on a page is represented by an instance object. The array may be
indexed by a number or string name of the editor, or (as with all JavaScript arrays)
may be identified by name, separated by a period (.).

See Also: “Instances Object” on page 9

The ActiveX control is accessible from the Instance object by using the editor
property. For example, objinstance.editor.

In these examples, the name of the editor is "MyContent1". The JavaScript
variable 'sEditorName' is presumed to hold the name of the editor, as in
sEditorName = "MyContent1". Likewise, the JavaScript variable 'i' is presumed to
be a valid numeric index.

<script language="JavaScriptl.2">

eWebEditPro.
eWebEditPro.
eWebEditPro.
eWebEditPro.
eWebEditPro.

</script>

instances._MyContentl
instances[""MyContentl1']
instances[sEditorName]
instances[0]
instances[i]

See Also: Ektron Knowledge Base article “JavaScript Error Accessing Editor
Name” (http://www.ektron.com//support/ewebeditprokb.cfm?doc_id=1200)

ActiveX Properties, Methods and Events

You can modify the values for the default ActiveX control properties in the
ewebeditprodefaults.js file, using a standard text editor such as Notepad.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

246

http://www.ektron.com//support/ewebeditprokb.cfm?doc_id=1200

ActiveX Control

You can also modify ActiveX control property values for individual instances of the
editor. See “The Parameters Object” on page 242.

For details on the properties, methods and events, see "eWebEditPro ActiveX
Control Object” on page 13.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 247

The Configuration Data

eWebEditPro’s configuration data lets you define many aspects of editor
functionality. For example, by modifying the configuration data, you can

® enable/disable features, such as automatic spell check
® arrange toolbars

® add custom commands

® determine whether users can edit HTML source code

® manage the image selection feature

Managing the Configuration Data

The Site Administrator controls the configuration data and specifies which
configuration data to use. Users cannot edit the configuration data.

Internetintranet to Fermote Site

YWiah /

Fage XML
and —m Configuration
Scripts File
bromser eWeb Edit
Frao
— - —w—»

Saved Content

Editing the Configuration Data

To implement a standard configuration of eWebEditPro, leave the

configuration data as is. If you want to modify the configuration data, you have
two choices:

® change the configuration data dynamically (see “Dynamically Changing
the Editor” on page 186)

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 248

The Configuration Data

® edit the config.xml file using your favorite text editor or a specialized XML
editor (continue reading this section)

If you edit the config.xml file, be very careful to adhere to the format. For example,
if you accidentally delete a less than character (<), your edits are not applied.

XML is case-sensitive. Therefore, keep all element names (for example,
<command>) and attribute names (for example, name) lower case.

If you use an XML editor to edit config.xml, Ektron supplies a corresponding
schema file (config.xsd) that can validate config.xml. By default, the config.xsd is
installed to the ewebed i tpro5 directory. Note that some validators might find
errors when validating config.xml against config.xsd because some attributes
have no value by default.

If you want to insert HTML as a stream into the config.xml file (as opposed to as a
file specification), delete the encoding attribute information (encoding=) at the
top of the file.

NOTE If you are using eWebEditPro within an Ektron Content Management System
(CMS), and you want to modify the configuration data via a file, you can find
samples of the file within the folder.

Customizing Configuration Data for Data Designer Content

The config.xml settings (described above) check regular HTML content. If you are
using the Data Designer, you must make the same changes to the
configdataentry.xml file.

Providing Configuration Files for User Groups

Since the file is designated at run time, you can use scripting to determine which
configuration data the user loads. The following are a few options for
implementing separate configuration files for different user groups in your
organization.

In this example, you create a configuration file named admin.xml.

® Set up a series of Web pages for each group to log into. Each page specifies
which configuration data to use.
For example, you could change the configuration data in the HTML page that
launches the editor using this line.
<script language="JavaScriptl._2">
<I--
eWebEditPro.parameters.config=""administration.xml"
eWebEditPro.create("'MyContent2', 700, 250);
//-->
</script>
(See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.)

You can set up and reference different file names or different file locations.
Using different file names is probably easier if you are starting with the
sample files provided by Ektron.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 249

The Configuration Data

® Use the user’s login name to determine which configuration data to use. In an
ASP or ColdFusion environment, you can use the login name as a search
key in a database to retrieve the configuration data that the user should
access.

® Use the login name as the XML file name. You can keep all configuration files
in one location and build the xml file name using the login name.

strCfgFile = "http://www.ektron.com/configs/" +
Login.value + "_xml

ewebeditprol.Config = strCfgFile

This is similar to a user's profile that is set up when someone logs into an
operating system.

If the user does not have a profile, the user gets the editor’s default
functionality.

Changing the Configuration Data’s Location

The location of the configuration data is specified in the ewebeditprodefaults.js
file, which is located in the folder to which you installed eWebEditPro.

The configuration data’s location is specified in the this.config = attribute. To
change the location of the configuration data on the client, edit this line.

Troubleshooting Problems with the Configuration Data

Sometimes, when you change the configuration data, you refresh the page that
hosts eWebEditPro but still cannot see the effect of those changes. For example,
you add buttons to the <interface> section of config.xml, but the toolbar does
not display the buttons when eWebEditPro loads.

For possible solutions to this problem, see "Changes to config.xml Have No
Effect” on page 256.

Organization of Configuration Documentation
Documentation for the configuration data consists of the following topics.
® “Defining the Toolbar” on page 166
® ‘“|Letting Users Customize the Toolbar” on page 254

® “Overview of Configuration Data” on page 258

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 250

Managing the Configuration
Data

The Site Administrator controls the configuration data and
specifies which configuration data to use. Users cannot edit the
configuration data.

Internetintranet to K ermote Site

YWab /

Fage XML
and —m Configuration
Soripts File
bromser eWeb Edit
Frao
— —

Saved Content

Editing the Configuration Data

To implement a standard configuration of eWebEditPro, leave
the configuration data as is. If you want to modify the standard
configuration data, you have two choices:

= change the configuration data dynamically (see
“Dynamically Changing the Editor” on page 186.)

= edit the config.xml file using your favorite text editor or a
specialized XML editor (continue reading this section)

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 251

Managing the Configuration Data

If you edit the config.xml file, be very careful to adhere to the
format. For example, if you accidentally delete a less than
character (<), your edits are not applied.

XML is case-sensitive. Therefore, keep all element names (for
example, <command>) and attribute names (for example, name) lower
case.

If you use an XML editor to edit config.xml, Ektron supplies a
corresponding schema file (config.xsd) that you can use to validate
config.xml. By default, the config.xsd is installed to the ewebeditpros
directory. Note that some validators might find errors when
validating config.xml against config.xsd because some attributes
have no value by default.

If you want to insert HTML as a stream into the config.xml file (as
opposed to as a file specification), delete the encoding attribute
information (encoding=) at the top of the file.

Providing Configuration Files for User Groups

Since the file is designated at run time, you can use scripting to
determine which configuration data the user loads. The following
are a few options for implementing separate configuration files for
different user groups in your organization.

In this example, you create a configuration file named admin.xml.

* Set up a series of Web pages for each group to log into. Each
page specifies which configuration data to use.

For example, you could change the configuration data in the
HTML page that launches the editor using this line.

<script language="JavaScriptl.2">

<i1--

eWebEditPro.parameters.config="administration.xml""
eWebEditPro.create(*'"MyContent2', 700, 250);

//-->

</script>

(See Also: “Appendix A: Naming the eWebEditPro Editor” on
page 576.)

You can set up and reference different file names or different
file locations. Using different file names is probably easier if
you are starting with the sample files provided by Ektron.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 252

Managing the Configuration Data

= Use the user’s login name to determine which configuration
data to use. In an ASP or ColdFusion environment, you can
use the login name as a search key in a database to retrieve
the configuration data that the user should access.

= Use the login name as the XML file name. You can keep all
configuration files in one location and build the xml file name
using the login name.

strCfgFile = "http://www.ektron.com/configs/" + Login.value +
*oxml

ewebeditprol.Config = strCfgFile
This is similar to a user's profile that is set up when someone
logs into an operating system.

If the user does not have a profile, the user gets the editor’s
default functionality.

Changing the Configuration Data’s Location

The location of the configuration data is specified in the
ewebeditprodefaults.js file, which is located in the folder to which
you installed eWebEditPro.

The configuration data’s location is specified in the this.config =
attribute. To change the location of the configuration data on the
client, edit this line.

Troubleshooting Problems with the Configuration

Data

Sometimes, when you change the configuration data, you refresh
the page that hosts eWebEditPro but still cannot see the effect of
those changes. For example, you add buttons to the <interface>
section of config.xml, but the toolbar does not display the buttons
when eWebEditPro loads.

For possible solutions to this problem, see "Changes to config.xml
Have No Effect” on page 256.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 253

Letting Users Customize the Toolbar

The al lowCustomize attribute of the interface element is part of the
configuration data. Possible values are true and false.

<interface name="beta" allowCustomize=""true">

Modify this attribute to let users customize eWebEditPro. If the attribute is set
to “true”, users can

® create a new toolbar menu

® remove an existing toolbar menu

® add commands to a toolbar menu

® remove commands from a toolbar menu

® rearrange the commands on a toolbar menu

NoOTE Users can only add commands defined in the configuration data to a toolbar
menu.

If al lowCustomize is set to false, the Customize option does not appear
on the user’s customization menu (the menu that the user invokes the
customize the toolbar).

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 254

Letting Users Customize the Toolbar

Allowing User Customization

The user places the cursor on a toolbar and right clicks the mouse to invoke the
customize dialog box (illustrated below).

Toolbar Customization |

| Commands |

— Toolbarz

Edit Hew |

Special Characters Delete |
Wigw Az
Format Resstal |
FParagraph Format

Cloze

After the user customizes toolbar menus and presses Close, the customization
files are saved in the client PC’s temporary folder. The file’s names (prior to the
file extensions) match the value assigned to the interface name attribute in
the configuration data.

The next time the user opens that page, the customized toolbar appears. From
this point on, any changes you make to the interface section of the configuration
data on the server are not used on the user’s computer.

If you want to apply changes to the interface section of the configuration data to
all users, see “Overriding User Customization” on page 256.

Preventing Customization by Users

If you set al lowCustomize to false, users cannot permanently customize their
toolbars. The system uses the default toolbar and menu specifications defined in
the configuration data.

NoTE If you set al lowCustomize to false, the user still sees the customize option, and
customization procedure acts the same. However, the customization is only saved
while the user remains on the page. Once the user leaves the page, the
customization is lost.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 255

Letting Users Customize the Toolbar

Overriding User Customization

WARNING!

You might allow users to customize eWebEditPro, but later need to implement a
global change to the editor. For example, you may decide that users cannot edit
HTML code.

To override all user customization, follow these steps.
1. Make the necessary changes in the configuration data on the server.

2. Change the value of the interface name attribute. For example, if the
attribute’s value is beta, you could change it to betal.

If you override user customization, users lose all changes made to eWebEditPro
toolbars and menu configurations. If the users preferred those customizations,
they must redo them.

To understand how changing the interface name attribute of the configuration
data updates all user configurations, read “Determining Which Configuration
Data to Use” on page 256.

Determining Which Configuration Data to Use

When a user launches eWebEditPro, the following events occur.

1. The browser reads the configuration data on the server to determine which
data to use. The file name is the value of the interface name attribute.

2. The browser looks for a customization file with that name in the temporary
folder on the user’s computer. If it finds one, that configuration data
determines which toolbars to display.

If the browser does not find a customization file on the user’s computer, it
defaults to the interface section of the configuration data on the server to
determine which toolbars to display.

Changes to config.xml Have No Effect

Sometimes, you might change the configuration data but the changes have no
effect. For example, you add buttons to the <interface> section of the
configuration data, but the toolbar does not display them when eWebEditPro
loads in the browser.

This table suggests how to fix this problem.

Possible Cause

Resolution

Wrong configuration file - You did not modify the Double check all the paths and the config parameter to
configuration file that is being loaded. It is quite ensure that you are using the correct configuration.
common to edit the wrong file. Search for all config.xml files on the server.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 256

Letting Users Customize the Toolbar

Possible Cause

Resolution

Cache - Either the browser cached (that is, stored
on your PC) an old version of the page displaying
the editor, or the Web server is returning an older
version from its cache.

Enter the URL of the configuration file into your
browser’s address bar (this works best with Internet
Explorer 5.0 or later). The configuration data should
appear. Ensure that your changes are present.

If they are not, clear the browser cache. In IE, from the
Tools -> Options dialog, delete temporary Internet files.

If the problem persists, force the Web server to read
the file by placing ?x=1 at the end of the URL, as
shown here:

Browse to “..../config.xml?x=1".

If the correct file appears, the Web server has cached
the file. Either restart the server or wait for the server to
refresh the cache.

Customized by user - If the end user customized
the toolbar (which can only occur if the

al lowCustomize attribute of the <interface>
element is “true”), changes to the configuration
data are not applied.

The editor will display the toolbar specified in the
configuration data after one of these events occurs:

® The user opens the customize dialog and clicks
the Reset All button. This causes the editor to dis-
play the toolbar according to the configuration
data.

® The interface element name is changed in the

configuration data. For example:
<interface name="'custom2" ...>

TIP: To ensure that interface is updated, name it
with the date and time the configuration was
changed. For example, <interface
name="'‘custom_20010824 1318" ...>.

® The user is prevented from customizing the tool-
bar. To do this, set the al lowCustomize attribute
to “false” as shown:

<interface ... allowCustomize="false">

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

257

Overview of Configuration Data

This section presents two charts that depict the configuration data:
® afunctional view, which arranges configuration data by task

® a hierarchical view, which arranges configuration data by XML element

If you are reading this online, you can click on purple items to get more
information.

Following the illustration is a table that describes the major components in
alphabetical order. The table links to more detail about each configuration
element.

NOTE You can also edit configuration data dynamically. For information, see
“Dynamically Changing the Editor” on page 186.

NOTE If you use an XML editor to edit config.xml, Ektron supplies a corresponding
schema file (config.xsd) that you can use to validate config.xml. By default,
the config.xsd is installed to the ewebeditpro5 directory. Note that some
validators might find errors when validating config.xml against config.xsd
because some attributes have no value by default.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 258

Configuration Data: Functional View

Overview of Configuration Data

eWebEditPro
Configuration Data

Functionality

Table creation

HTML form elements

Spell checking

MS Word editing

Image and file upload
WeblmageF X image editing

XML elements

Expert User

Adding custom commands
Viewing source code
Inserting HTML

Removing unwanted
characters

Encoding special & extended
characters

Publishing options

Controlling WY SIWYG Environment
*+ Cut copy, paste

+ Style class

* Fonts and headings

+ HypeHinks &8 bookmarks

+ Print

+ Find & replace

+ Lists

+ Alighment & indentation

+ Special 8 extended characters
+ Text attributes

+« Undo, redo

User Interface

= Toolbars, menus, and
popups
« Commands and Buttons

Data Designer

(eVebEditFra+<ML only)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 259

Overview of Configuration Data

Configuration Data: Functional View Topic List

Topic

For more information, see

Functionality

Table creation

"Managing Tables” on page 310

HTML form elements

"Form Elements” on page 330

Spell checking

"The Spellcheck Feature” on page 343

MS Word editing

"Editing in Microsoft Word” on page 348

Image and file upload

"The Mediafiles Feature” on page 430

WeblmageFX image editing

"Imageedit element” on page 445

XML elements

"The XML DTD and Schema” on page 678

Expert User

Adding custom commands

"External Features” on page 325

Viewing source code

"The ViewAs Feature” on page 327

Inserting HTML

"The EditHTML Feature” on page 328

Removing unwanted characters

"Cleaning HTML” on page 332

Encoding special & extended
characters

"Configuring for Extended and Special Characters” on

page 356

Publishing options

"publish” on page 294

Controlling WYSIWYG
Environment

"Standard Commands” on page 199

Toolbars, menus, and popups

"User Interface Element Definitions” on page 271

Commands

"Commands” on page 157

Buttons

"Button Images” on page 299

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

260

Overview of Configuration Data

Configuration Data: Hierarchical View

Interface Features
menu popup
[I | I |
external clean form standard viewas edithtml
elements
[| | |
media
spelicheck msword table files custom tag

Configuration Elements in Alphabetical Order

Element Function For more info, see |Example
autoupload Defines the automatic image "Autoupload
upload mechanism. Element” on
page 435
bar Places vertical or horizontal bar |"bar” on page 271 <bar/>
on menu

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

261

Overview of Configuration Data

Element Function For more info, see |Example
button Defines toolbar button or menu |"button” on page 272 |<button command="cmdcut" />
option
caption Describes a menu bar or toolbar |"Caption” on <caption
button in the user interface page 274 localeRef="btnTxtVAHtmI"">View
As HTML </caption>
clean Ensures that content is readable | “Cleaning HTML” on |<clean cr="cr" If="1f"/>
and concise HTML page 332
cmd An abbreviated version of "cmd” on page 278 |<cmd name="cmdprint”
<command>. key="print" ref="sPrint" />
command Defines a standard editor action, |"command” on <command name=""cmdviewashtml"
such as copying text. page 275 style="icon" visible="true">
</command>
config Identifies the root element of the | “The Config <config
file Element” on product="eWebEditPro'>
page 265
docxml Lets you configure "Docxml Element” on
eWebEditProto insert an page 696
element’s required elements and
attributes
domain The domain name for the "Domain Element” on
connection. page 440
editHTML Determines whether users can “The EditHTML <edithtml enabled="false"/>
edit HTML source code Feature” on page 328
external Defines external client “External Features” |<external enabled=""true'>
functionality on page 325
features Defines standard and custom “The Features <features>
commands Element” on
page 266
formelements Let the user create an HTML “Form Elements” on |<form name="'Test"
form page 330 action="http://localhost/
ewebeditpro5/formtest._htm"
method=""post'>
</form>
glyph A glyph, or icon, that can "Glyph Element” on
represent custom tag to the user |page 693
imageedit Defines location of Ektron "Imageedit element” |<imageedit>
WeblmageFX image editor. on page 445 <control
src=""[WeblmageFXPath]/
ImageEditConfig.xml" />
</imageedit>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 262

Overview of Configuration Data

Element Function For more info, see |Example
interface Lets you define the user interface| “Letting Users <interface name="beta4"
Customize the allowCustomize="false'">
Toolbar” on
page 254, “The
Features Element”
on page 266
listchoice Defines an individual choice in a |”listchoice” on <selections
list box command item page 284 name="headinglist"
enabled=""true" sorted=""true">
<listchoice>Arial,
Helvetica</listchoice>
</command>
loadsch A list of schemas to load "Loadsch Element”
on page 699
math Controls the math expression ekkokk <math imagetype="'png'>
editor <cmd name="cmdmath"
key="math" ref="cmdMath"/>
<toolbar></toolbar>
</math>
maxsizek Specifies maximum file size of "Maxsizek Element”
upload. on page 433
mediaconfig Controls the operation of the "Mediaconfig <mediaconfig allowedit="true"
configuration dialogs Element” on />
page 433
mediafiles Controls the selection and upload | “The Mediafiles <mediafiles>
of media (for example, images) |Feature” on page 430|<command name="cmdmfumedia™
style="icon" visible="true">
</mediafiles>
menu Defines a toolbar or pulldown “menu” on page 288 |<menu name="editbar"
menu newRow=""false"
showButtonsCaptions="false"
wrap=""Tfalse">
<caption
LocaleRef="btnMainCap">Edit
</caption>
msword Lets you edit within Microsoft "Editing in Microsoft |<msword enabled=""true">
Word Word” on page 348 |<cmd name="cmdmsword"
key=""msword" ref="cmdMSw"
style=""toggle'/>
</msword>
password Provides the password for "Password Element”
gaining access to the server. on page 439
popup Defines a popup menu "popup” on page 290
port Specifies which port to use for "Port Element” on
any file transfers. page 443

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 263

Overview of Configuration Data

Element Function For more info, see |Example
resolvemethod Defines how to resolve file paths |"Resolvemethod
Element” on
page 444
selections Defines a list of items within a "listchoice” on see listchoice
listchoice command. page 284

simtaglist and simtag

Reduce maintenance of XML
data for tags with similar

"Simtaglist Element”
on page 694; "Simtag

checking

Feature” on page 343

attributes Element” on
page 695
spellayt Defines how spell checking as- |"Spellayt” on <spellayt autostart="false"
you-type operates page 345 markmisspelledsrc=""[eWebEditP
roPath]/wavyred.gif"
delay="20" />
spellcheck Controls the operation of spell “The Spellcheck <spellcheck enabled="true">

spellingsuggestion

Suggestions for correcting errors
when using spell checking “as-

you-type

"Spellingsuggestion”
on page 346

<spellingsuggestion
enabled=""false" max="4"/>

standard Defines standard editing “standard” on <standard autoclean="true"
commands and options page 293 publish="xhtml">
style Defines style sheet "style” on page 296
implementation
table Allows users to create tables “Managing Tables” |<table enabled="true">
on page 310
tagattrdlg Controls the Custom Tag "tagattrdlg” on
attribute dialog page 702
tagdefault Default attribute values that "Tagdefault Element”
determine a tag's appearance if a |on page 693
tag is not defined.
tagdefinitions Affects overall functionality of "Tagdefinitions
custom tags feature. Element” on
page 683
taginsdlg Controls the Insert Custom Tag |"taginsdlg” on
dialog page 701
tagpropdig Controls the Tag Properties "tagpropdlg” on
dialog page 703
tagspec Specify appearance of custom "Tagspec Element”
tag on page 684
tooltiptext Defines text that appears when |"toolTipText” on <toolTipText
cursor hovers over an icon page 297 localeRef="btnal">Align
Left</toolTipText>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

264

Overview of Configuration Data

Element Function For more info, see |Example
transform Specifies transformation files to |"Transform Element”
use when loading or saving on page 698
content.
transport Defines the mechanism used to |"Transport Element” |<transport allowupload="true"
select and upload media files. on page 434 type="post” xfer="binary"
pasv=""true'>
username Provides the user name for "Username Element”
gaining access to the server. on page 439
validext Valid file extensions allowed for |"Validext Element” on |<validext>gif,jpg,png,jpeg.jp
upload page 432 e</validext>
viewAs Determines whether users can “The ViewAs <viewas enabled="true"
view HTML source code Feature” on page 327 |publish="xhtml" mode="whole">
webroot Specifies the path to use when |"Webroot Element”
referencing an uploaded file. on page 442
xferdir The destination directory on the |"Xferdir Element” on

server for the upload

page 441

xml Declaration

Identifies the file as an xml file

<?xml version="1.0"
encoding=""is0-8859-1"?>

xsd

Maintains a list of schemas to
load

"XSD Element” on
page 700

The Config Element

Config is the root element that contains all information about the elements of
eWebEditPro that you are defining. All other elements are defined within the

config element.

Therefore, you create different configuration data for every unique set of functions
that you are implementing. For example, if one user group can view source code,
while another group cannot, you would create two sets of configuration data.

Users can customize eWebEditPro toolbars. See “Letting Users Customize the
Toolbar” on page 254 for details.

The Interface Element

Use the interface section of the configuration data to define the user interface.
Within the interface element, you can modify

* which toolbar buttons are available to the user

® the sequence of toolbar buttons

space between toolbar options

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 265

Overview of Configuration Data

NOTE A toolbar button typically executes a command. Commands are defined in the
Features element.

Buttons not Assigned to Menus

By default, some commands are not assigned to any standard menu. However,
the user can place any enabled command on a menu. This procedure is
explained in the eWebEditPro User Guide’s section “Removing or Adding Menu
Iltems.”

The Features Element

Use the features section of the configuration data to define the commands that
are assigned to buttons and menus in the interface section. You can

Attribute Types

delete standard commands
add custom commands

modify the images and text that appear with the command on a toolbar button
or menu

if the command'’s style is list, enter the listchoice items on the list

set feature options, such as enabling publishing options

Each element has one or more attributes that let you tailor its function to your
unique needs. Each attribute is one of the three types listed below.

The attributes are actually always strings, but the editor expects their values to be
one of the types listed below.

Boolean

These are the valid string values for Boolean attributes.

Positive Negative
yes no

true false

1 0

ok [unknown]

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 266

Overview of Configuration Data

Integer

An attribute that is expected to contain numeric values is interpreted as an
integer. If an integer value contains alpha characters, it is converted to 0.

String

An attribute interpreted as this type uses the text given without interpretation. All
characters are converted to lower case unless the text is defined as a path.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 267

User Interface Elements: Standard,
Menu, and Popup

The configuration data contains several elements that let you define the
eWebEditPro toolbar. For example, the button element lets you define the
image that appears on a toolbar button, and the command that is executed
when the user presses the button.

NOTE You can also edit configuration data dynamically. For information, see
“Dynamically Changing the Editor” on page 186.

The following chart illustrates the main config.xml elements that let you
determine eWebEditPro’s user interface. Following the chart is a table that
lists the components in alphabetical order.

Review the chart and table for an overview of these components, then
proceed to subsequent sections for details about each component.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 268

User Interface Elements: Standard, Menu, and Popup

User Interface Element Hierarchy

/ config m\

Interface ‘ Features
menu popup
I]
I
[I I]
caption bar button space
standard
|
I |
font size style cmd command
]
hle:ve:r fonts
caption selections
headings font names imade
9 listchoice
tooltip
text

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 269

User Interface Elements: Standard, Menu, and Popup

User Interface Elements in Alphabetical Order

Element Description For more
information,
see

bar Separates a group of commands from other “bar” on

commands on a menu. page 271
button A toolbar button or menu item. “button” on
page 272
caption Text describing a menu bar or toolbar button. “Caption” on
page 274
command A standard or custom editor action, such as “command” on
copying text. page 275
cmd An abbreviated version of <command>. “cmd” on
page 278
config The single root element that signifies that this “config” on
configuration belongs to eWebEditPro. page 279
features One of the two major sections of the configuration “features” on
data. Defines all standard and custom commands, page 280
and publishing options.

font Specifies font names and sizes "fonts” on
page 319

font size Specifies font sizes "fontsize” on
page 320

font name Specifies font names "fontname” on
page 319

header level Specifies available heading levels for paragraphs "heading[x]” on
page 322

headings Defines a heading level "headings” on
page 321

image An image to display on a button. “image” on
page 281

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

270

User Interface Elements: Standard, Menu, and Popup

Element Description For more
information,
see

interface One of two major sections of the configuration “interface” on

data. Defines toolbars, menus, dialogs, and other page 282
interface items.

listchoice Each item on a list. “listchoice” on
page 284

menu A toolbar or pulldown menu. “menu” on
page 288

popup A menu that is launched by pressing a toolbar “popup” on
button. page 290
selections A group of listchoice items. “selections” on
page 291
space A separator between toolbar buttons or popup “space” on
menus. page 292
standard Standard editing commands and options. “standard” on
page 293
style Defines style sheet and other aspects of style “style” on
sheet implementation. page 296
toolTipText Text that appears when the cursor hovers over a “toolTipText”
toolbar button. on page 297

User Interface Element Definitions

bar
Places a
B# oo
® vertical bar on a toolbar or
Inzert Table...
® horizontal bar =ET e on a popup menu

The bar separates one or more commands from other commands on a menu.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 271

User Interface Elements: Standard, Menu, and Popup

See Also: “Adding a Separator Bar Between Two Toolbar Menu Items” on
page 177

NOTE Unlike the other commands, the bar and space elements are not defined in the
configuration data. You cannot modify their appearance.

Element Hierarchy

<config>
<interface>
<menu>
<bar>
<config>
<interface>
<popup>
<bar>
Attributes
Name Attribute Type Default Description
None There are no attributes to
the bar element.
Example
<menu name="‘editbar'>
<caption visible="false" localeRef="btnMainCap">Edit</caption>
<button command="‘cmdcut" />
<button command="‘cmdcopy" />
<bar/>
<button command="‘cmdpaste" />
</menu>
_ b BB’
The result of this code would look like this.
button
Bookmark
Defines either a toolbar button (=———==)ora

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 272

User Interface Elements: Standard, Menu, and Popup

Inzert Table...

[nzert Fow
[nzert Calurnn

menu item (Fialata Rase).

The button element has a command attribute that identifies a command to
execute when the user selects a toolbar button or a menu item. The value
assigned to the button’s command attribute must be defined within a command
element. If not, the command is not added to the icon bar or menu item.

The order in which button elements are entered within a menu or popup menu
command determines the order in which menu items appear on icon bars or
menus.

See Also: “Adding a Toolbar Button” on page 173 and “Removing a Toolbar
Button or Dropdown List” on page 176

Element Hierarchy

<config>
<interface>
<menu>
<button>
<config>
<interface>
<popup>
<button>
Attributes
Name Attribute Type Default Description
enabled Boolean Yes Is the command enabled? If false, the
button is grayed.
popup String Defines a Popup menu to display when
the button is selected. (See “popup” on
page 290.)
If a popup is defined, the command name
is not sent to the client.
command A command The command to execute when the user
element clicks the button.
See Also: "Commands” on page 157
Example

<menu name="'samplebar'>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 273

User Interface Elements: Standard, Menu, and Popup

<caption visible="false" localeRef="btnMainCap'>Sample</caption>
<button command="‘cmdcut" />
<button command="myselections" popup="myPopup™ />

</menu>

Caption
Provides the text that describes a menu bar or toolbar button in the user interface.
If a caption is assigned to a menu, the caption text only appears when the menu

lEdie |
% B @

If a caption is assigned to a button, the caption text appears on the toolbar with

bar is floating.

the icon if you are displaying button caption text.

NOTE The textAlignment attribute of the menu element determines the alignment of
text within a button.

See Also: “Creating or Editing the Toolbar Menu Caption” on page 172 and
“Displaying Button Caption Text” on page 179

Element Hierarchy

<config>
<interface>
<menu>
<caption>

<config>
<features>
<standard>
<command>
<caption>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 274

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Type Default Description
enabled Boolean Yes Is the element enabled?
localeref String Localization identifier. This value
translates the caption into a local
language.
See Also: “Translating Button Captions
and Tool Tips” on page 180
visible Boolean Yes Is the caption visible by default?
Examples
Button
<command name="‘cmdviewashtml' style="icon" visible=""true'">
<caption localeRef="btnTxtVAHtmI">View As HTML </caption>
Menu
<menu name="editbar' newRow="false" showButtonsCaptions=""true"
textAlignment="bottom" wrap="false'>
<caption visible="true" localeRef="btnMainCap">Edit</caption>
</menu>
command

Defines a standard editor action, such as copying text. Before commands can be
used by a toolbar button or menu item, they must be defined and enabled.

A command definition does not need to be directly under a feature element. But it
must be contained somewhere within a feature hierarchy.

See Also: “Commands” on page 157 and “cmd” on page 278

Element Hierarchy

<config>

<features>
<standard>

<command>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 275

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Default Description
Type

caption String Provides the text that describes a menu bar or
toolbar button in the user interface.
See Also: “Caption” on page 274

enabled Boolean Yes Is the command enabled? If false, the command is
not created.

image String (key The image that appears if the command is

and/or src) assigned to a button.

See Also: “Button Images” on page 299

maxwidth Number 10 The maximum number of characters wide to make
a command. This attribute only applies when the
command is a list box or edit box.

name String The command’s name. The name must be unique.

ref String Can replace caption or toolTipText, or both.
Enter a code from the localization file to define a
command’s caption or ToolTiptext or both.
See Also: “Translating Button Captions and Tool
Tips” on page 180

selections String Defines a list of items within a listchoice
command.
See Also: “selections” on page 291

style String default The style of the command when it appears on an
icon bar or menu. The command can be one of
these styles.
Y “iCOn”
® ‘“toggle”
® ‘“listbox”
® ‘edit”
For more information, see “Command Styles” on
page 277.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 276

User Interface Elements: Standard, Menu, and Popup

Name Attribute Default Description
Type

toolTipText String Defines the tool tip text that pops up when the
cursor hovers over an icon.
See Also: “toolTipText” on page 297

visible Boolean True Is the command visible when first created?
If set to false, the command is created but is not
displayed by default.

Command Styles

The command can be one of these styles.

Style

Values that
indicate this style
in style attribute

Description

uiconn

default, icon, or
unknown

A toolbar button that is drawn as a rectangle
normally containing an image. The button can
contain both an icon and a caption, just the icon,
or just the caption.

utogglen

toggle

A button that maintains a pressed or checked
state. If shown in a list box, it displays with a
check. If shown on a toolbar, it is drawn as an
'icon' style command but is pressed in when
checked.

Clicking on the item toggles its state between
check and unchecked or pressed in and popped
out. If drawn on a toolbar, it is drawn using the
same options as the 'icon' style.

”

“listbox

listbox, list

This creates a command button that is displayed
as a dropdown list box. The items for this listbox
are defined in the selections element which is
contained within the command element defining
the command. (See ‘“listchoice” on page 284.)

“edit”

edit, text

This creates a command button that allows the
user to enter text. For each character typed into
the edit area, the command is sent with the current
text as the command's parameter.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 277

User Interface Elements: Standard, Menu, and Popup

Example
<command name="‘cmdviewashtml' style="icon" visible="true'>
<caption localeRef="btnTxtVAHtmI">View As HTML </caption>
<toolTipText localeRef="btnVAHtmI">View As HTML </toolTipText>
</command>
cmd

An abbreviated version of command, created to reduce the time required to load
configuration data. Note that <cmd> has fewer attributes than <command>.

The <command> element is also available. You must use it for more complex
commands, such as dropdown lists.

Element Hierarchy

<config>
<features>
<standard> or any other feature
<cmd>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 278

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Default Description
Type
enabled Boolean Yes Is the command enabled? If false, the command is not
created.
key String An image internally available to the editor that appears if
the command is assigned to a button.
See Also: “Button Images” on page 299
name String The command’s name. The name must be unique.
ref String Replaces caption and toolTipText.
Enter a code from the localization file to define a
command’s caption and ToolTiptext.
See Also: “Locale Files” on page 202
src String An image specified by a URL (in other words, the image
exists somewhere in the Internet or an Intranet). The image
appears if the command is assigned to a button.
See Also: “Button Images” on page 299
style String The style of the command when it appears on an icon bar
or menu.
Y Hiconn
Y lltogglell
® ‘“listbox”
Y Heditn
For more information, see “Command Styles” on page 277
Example
<cmd name="cmdprint" key="print" ref="sPrint" />
config

The single root element that signifies that this configuration belongs to
eWebEditPro. This entry must exist before the configuration information is

processed.

See Also: “The Config Element” on page 265

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

279

User Interface Elements: Standard, Menu, and Popup

Element Hierarchy

Child Elements

<config>

interface, features

Attributes
Name Attribute Type Default Description
product String “ The configuration data’s target product. This
attribute’s value must be eWebEditPro for
processing to continue.
version Integer 0 The product release for which this configuration
data is targeted. The value must be 2 or greater
for processing to continue.
revision Integer 0 The revision of the target product.
Example
<config product="eWebEditPro" version="4" revision="1">
features

Element Hierarchy

Child Elements

NoOTE

One of the two major sections of the configuration data, the features section
defines all standard and custom commands, and publishing options.

All features loaded into the product must be defined within this element. Any
feature defined outside is ignored.

See Also: “The Features Element” on page 266

<config>
<features>

clean, custom tag, edithtml, external, form elements, mediafiles, mwsord,
spellcheck, standard, table, viewas

The features element has other child elements that do not affect the user
interface. They are depicted in "Configuration Data: Hierarchical View” on
page 261.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 280

User Interface Elements: Standard, Menu, and Popup

Attributes

Name

Attribute Type

Default

Description

enabled

Boolean

True

If set to false, all features are disabled
and no commands are created in the
interface.

If false, the client or script must use the
Toolbar object to create any necessary
commands.

Note that the standard feature cannot be
disabled. For this feature only, the
enabled attribute is ignored.

image

Example

<features enabled="true'>

Specifies an image to display for a command. If the command style is toolbar
button, the image appears on the popup or menu button.

See Also: “Button Images” on page 299, and “Changing the Image that Appears
on a Toolbar Button” on page 178

Element Hierarchy

<config>

<features>

<standard>
<command>

<image>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 281

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Type Default Description
key String default The name of the internal image to
display. If an image has both a key and a
src value, the src value overrides the key
value.
src String . The location of an external image.
Since this is seen as a path, the
character case is preserved.
Example
Using only a Key Attribute
<command name="cmdCut" style="icon" visible="true'">
<image key="Cut'/>
<caption localeRef="cmdCut">Cut</caption>
<toolTipText localeRef=""cmdCut>Cut a selection</toolTipText>
</command>
Using Both a Key and an Src Attribute
<command name="mysaveaspif' style="icon" visible=""true">
<I-The src attribute takes precedence over the key attribute ->
<image key="spellcheck"
src="http://us.al.yimg.com/us.yimg.com/i/ww/giftl._gif"/>
<toolTipText localeRef="btnsapf'>Save as PIF</toolTipText>
</command>
interface

The section of the configuration data that defines toolbars, menus, dialogs, and
other interface items. Interface items defined outside this section are ignored.

See Also: “The Interface Element” on page 265

Element Hierarchy

<config>

<interface>

Child Elements

menu, popup

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 282

User Interface Elements: Standard, Menu, and Popup

Attributes

Name Attribute Default Description
Type

allowCustomize Boolean Yes Determines whether users can customize their
interface from the one defined in the configuration
data.

If True, the user can modify toolbars. The
customization is saved on the local system under
the name given in the name attribute.

If you set this value to False, the editor ignores
any customization that the user saves. In this
case, the default interface is used.

See Also: "Letting Users Customize the Toolbar”
on page 254

enabled Boolean Yes Determines whether the interfaces defined here
are enabled. If set to False, it is the responsibility
of the client or script to use the Toolbar object to
create the interface.

See Also: “Dynamically Changing the Editor” on
page 186

name String Default The name of the interface. When a user
customizes their interface, this name identifies the
changes.

One method of resetting an interface to allow for
customization, but ignore previous customization,
is to change the name. This will ignore a saved
configuration and use the one defined in the
configuration data.

See Also: "Letting Users Customize the Toolbar”
on page 254

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 283

User Interface Elements: Standard, Menu, and Popup

Name Attribute Default Description
Type
visible Boolean True Controls whether the toolbar is visible. If set to

false, the interface is created but does not appear.
However, the context menu appears if a user right
clicks the mouse.

If set to false, the toolbar can only be displayed by
programmatically by calling ShowAl IMenus() in
the Menus interface, using a script like this:

eWebEditPro. instances.MyContentl.editor.M
enus() -ShowAl IMenus();

(See Also: “Method: ShowAlIMenus” on

page 102.)

For example, you set this attribute to false
because the editor is the second one on a page.
The XML data would look like this:

<interface name="standardl"
allowCustomize="true" visible="false">

But, if the user’s focus shifts to the second editor,
you want to display its toolbar. At that point, you
display the toolbar using this script:

eWebEditPro.MyContent2.Menus() .ShowAl IMenus();

context Boolean True Controls whether the context menu is visible. If set
to true, a menu appears when the user right clicks
the mouse with choices that are unigue to the
current situation (or context).

For example, if you are editing text and right click
the mouse, the context menu displays common
editing commands, such as cut and copy text. If
you are editing a table, the context menu displays
commands relevant to that activity, such as insert
row and insert column.

If set to false, the context menu does not appear.

Example
<?xml version="1.0" encoding=""i1s0-8859-1"?>
<config product="eWebEditPro" version="4" revision="1">
<interface name="myinterface" allowCustomize=""true">
listchoice

Defines an individual choice in a list box command item.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 284

User Interface Elements: Standard, Menu, and Popup

M ew Boman, Timnesgies

Arial, Helvetica
Comic Sans M5
Courier Mew, CoLrigr
Symbol

Tirnes New Boma 11, Times
Yerdana, Helvetica

Use this element to define attributes for each item in a list. The listchoice
command’s sty le attribute must be set to List or Listbox.
See Also: “Determining which Fonts, Font Sizes, and Headings are Available” on

page 182.
Element Hierarchy

<config>
<features>
<standard>
<command>
<selections>
<listchoice>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

285

User Interface Elements: Standard, Menu, and Popup

Attributes

Name

Attribute
Type

Default

Description

enabled

Boolean

Yes

Is the item enabled? If not, it is excluded from the list.

command

String

The command to send in place of the command that
contains the list.

If not specified or empty, the listchoice command is sent,
and the selection's index or assigned data is sent as
parameters.

data

Integer

This value is assigned to the item selection. It is sent with
the command as a parameter.

If the value assigned is zero (0), the index of the selection is
sent.

localeRef

String

Used to translate the #text attribute of the element.

See Also: “Translating Button Captions and Tool Tips” on
page 180

Htext

String

The command checks the body of the listchoice element to
see if it includes text.

® |fit does, that text is sent as the attribute.
® |f the element does not include text, the command’s
caption attribute is sent as the attribute.

Also, this text is the selection item text. In other words, it is
the list of options that the user sees on the dropdown list.

This applies whether the body of the listchoice element
includes text or if the command's caption attribute is used.

Example

Here is the list that creates the font choice menu shown above. Note that the
items appear in the listbox in the order in which they are entered into the
command.

NOTE The top item in the list is the default value, unless the list is a font name, font size,
or header style list. In that case, the currently selected item is the default value.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 286

User Interface Elements: Standard, Menu, and Popup

<command name="‘cmdfontname" style="list" visible="true" maxwidth="12">
<image key="fontname'/>

<caption localeRef="btntxtfntnm">Times New Roman, Arial </caption>
<toolTipText localeRef="btnfntnm''>Font</toolTipText>

<selections name="headinglist" enabled="true" sorted="true">

<listchoice>Arial, Helvetica</listchoice>
<listchoice>Comic Sans MS</listchoice>
<listchoice>Courier New, Courier</listchoice>
<listchoice>Symbol</listchoice>
<listchoice>Times New Roman, Times</listchoice>
<listchoice>Verdana, Helvetica</listchoice>

</command>

Using the Selections Element

You can use the selections element to define a group of items in a list. This can be
helpful when you want to enable or disable a group of elements from one line of
the configuration data.

Parameters to the Listchoice Command

When a listchoice command is executed, three parameter values are sent along
with the command. Note that all commands can include a name and a text

parameter.
Parameter | How Value Determined
name The command checks to see if a command attribute is assigned to the listchoice
element.
® |f acommand attribute is assigned to the element, the system sends that com-
mand.
® |facommand attribute is not assigned to the element, the system sends the higher
level command to which the listchoice command is assigned.
text The command checks the body of the listchoice element to see if it includes text.
® [fit does, that text is sent as the parameter.
® |[fthe item does not include text, the defined command’s caption attribute is sent as
the parameter.
data The data value assigned to the item selection. If the value assigned is zero (0) (the
default value), the index of the selection is sent.

Assigning Command Attributes to Listchoice Elements

If you wish to send a list item as a command rather than parameter data, place a
command attribute in each listchoice element.

Commands assigned as attributes to listchoice elements do not need to be
defined as other commands are (that is, under the commands section of the
configuration data). If a command is defined under the commands section of the

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 287

User Interface Elements: Standard, Menu, and Popup

configuration data, information about that command (such as the caption) is used
with the selection.

Not Assigning Command Attributes to Listchoice Elements

If no command attributes are assigned to a listchoice element, the command that
contains the list is sent instead, and the index or data of the selection is sent as a
parameter.

Example

<command name="mylist" style="list" visible="true">
<image key="Spelling"/>
<caption localeRef="btnTxtsapf"'>Dropdown List of Commands</caption>
<toolTipText localeRef="btnsapf'>Dropdown List of Commands </toolTipText>
<selections name=""testlist" enabled="true" sorted=""true'>
<listchoice command="cmdcopy' data="50" enabled="true"></listchoice>
<listchoice command="cmdcut" data="8"></listchoice>
<listchoice command="cmdpaste' data="107" localeRef=""cmpaste'>Just Paste</listchoice>
<listchoice command="mynotify" data="42" localeRef="mynotify">Undefined Command </listchoice>
<I-These selections generate the larger command name "mylist" ->
<listchoice data="99" enabled=""false'>Do Not Show This</listchoice>
<listchoice data="999" enabled=""true'>Selection B</listchoice>
</selections>
</command>

menu
Defines a toolbar or pulldown menu.
A menu is the interface between the user and the commands.

See Also: “Creating a Popup Menu” on page 181 and “Determining Which
Menus Appear on the Toolbar” on page 167.

Element Hierarchy
<config>

<interface>
<menu>

Child Elements

caption, bar, button, space

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 288

User Interface Elements: Standard, Menu, and Popup

Attributes

Name Attribute Default | Description
Type

enabled Boolean True Is the menu enabled? A false value prevents the
creation of the menu.

“ou

name String The menu name. You refer to a menu by its name.

The name must be unique.

newrow Boolean Yes If the menu style is icon bar, a yes value forces the
menu to a new line on the toolbar.

See Also: "Placing a Toolbar Menu on a Row with
Another Menu” on page 171.

showbuttonscaptions Boolean False If true, button captions are shown. Otherwise, tool tips
act as the caption.

This is one of the few attributes that defaults to false.

See Also: "Creating or Editing the Toolbar Menu
Caption” on page 172 and "Translating Button
Captions and Tool Tips” on page 180.

style String icon Defines the look of the menu. These are the styles.
“Icon” (default) - Toolbar

“Pulldown” - Dropdown list

“Tab” - Tab Selections

“Status” - Status bar

“Popup” - Context Menu (See Also: "popup” on
page 290)

textalignment String Yes Alignment of the text on the button. (Only used if
showbuttonscaptions is set to “true”.) These are
the valid values.

“Top”
“Left”

“Right”

“Bottom”

“Center”

The default value is Bottom.

See Also: "Defining the Alignment of Caption Text” on
page 179.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 289

User Interface Elements: Standard, Menu, and Popup

Name Attribute Default | Description
Type
visible Boolean True Determines whether the menu appears within the

editor by default. If set to false, the user must perform
an action to display the menu.

For example, the user may have to select the menu
from a dropdown list to have it appear on the toolbar.

wrap Boolean True If true, and a toolbar, when the icons reach the right
edge of the display area, they wrap to the next line.
If false, the icons do not wrap to the next line. They are

invisible until you move the menu bar to another line of
the toolbar.

See Also: "Determining if a Toolbar Menu Should
Wrap to the Next Row” on page 171.

Example
<menu name="editbar" newRow="'true"
showButtonsCaptions="false" textAlignment="bottom">
<caption visible="false" localeRef="btnMainCap">Edit </caption>
<button command="‘cmdcut" />
<button command="‘cmdcopy" />
<button command="‘cmdpaste" />
</menu>
popup

Defines a popup menu. This menu is pre-defined for use either as a stand-alone
menu that is invoked programmatically, or as a menu attached to a command
button.

For more information, see “Creating a Popup Menu” on page 181.
Element Hierarchy
<config>
<interface>
<popup=>
Child Elements

caption, bar, button, space

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 290

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Type Default Description
enabled Boolean Yes Is the menu enabled? If set to false, you cannot
create this menu.
name String The menu name. You refer to a menu by its name.
The name must be unique.
Example
<popup name=""ViewAsPopup"
<caption visible="0" localeRef="btnMyViewAs'>View As</caption>
<button command="cmdviewaswysiwyg" />
<button command="cmdviewashtml" />
</popup>
selections

Defines a list of items within a listchoice command.

This element can be helpful when you want to enable or disable a group of
elements from one place.

Element Hierarchy

<config>

<features>

Child Elements

listchoice

<standard>

<command>
<selections>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 291

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Type Default Description
enabled Boolean Yes Is the list enabled? If no, then the defined
list is ignored.
name String The name of the list. It must be unique.
sorted Boolean True If set to
® “true”, the list appears in alphabeti-
cal order
® ‘“false”, the list appears as entered in
the configuration data
Example
<selections name="testlist" enabled=""true" sorted="true">
<listchoice command="cmdcopy" data="50" enabled="true'></listchoice>
<listchoice command=""cmdcut' data="8"> </listchoice>
<listchoice data=""999" enabled="true">Send testlist Command
</listchoice>
</selections>
space

Places a blank separator between toolbar buttons or popup menus. On a toolbar,
a space is one half the width of a normal icon (8 pixels).

The space command makes the toolbar easier to read.

NOTE Unlike the other commands, the bar and space elements are not defined in the
configuration data. You cannot modify their appearance.

Buttons with a Space Command

Buttons without a Space Command

|| %
Bl

See Also: “Adding a Space Between Two Toolbar Menu Items” on page 177

Element Hierarchy

<config>
<interface>
<menu>
<space>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 292

User Interface Elements: Standard, Menu, and Popup

<config>
<interface>
<popup>
<space>
Attributes
Name Attribute Type Default Description
None There are no attributes to
the space element.
Example
<menu name="‘editbar">
<caption visible="false" localeRef="btnMainCap">Edit</caption>
<button command="cmdcut" />
<button command="‘cmdcopy" />
<space/>
<button command="‘cmdpaste" />
</menu>
standard

Element Hierarchy

Child Elements

Defines standard editing commands and options.

<config>
<features>
<standard>

command, cmd, style

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 293

User Interface Elements: Standard, Menu, and Popup

Attributes

Name

Attribute
Type

Default

Description

autoclean

Boolean

“True”

Whether the editor automatically detects content
created by Microsoft Office 2000 applications (for
example, Word 2000). Office 2000 content may cause
problems when eWebEditPro users try to reformat it
(for example, change the font size).

“false” - Do not detect Office 2000 content

“true” (default) - Detect Office 2000 content

When the editor detects this content, the prompt
attribute of the <clean> element determines if a
message appears, asking the user whether or not to
clean the HTML code. (Answering yes to the prompt is
the same as selecting Clean HTML from the right-click
menu.)

See Also: "prompt” on page 337

publish

String

“xhtml”

Allows you to determine whether editor content is
stored as HTML or XHTML.

Important: If you are using ewWebEditPro with an
Ektron CMS, leave this setting as xhtml.

“xhtml” - The HTML code is converted to the XHTML
1.0 standard (as defined at http://www.w3.0org/TR/
xhtml1/).

“Contumely” - Medium level: eliminates overlapping
tags, and merges font tags.

“Minimal” - Eliminates invalid fonts, filters image urls,
and replaces cr/If according to the values set in those
attributes.

Advantages of XHTML

XHTML can be parsed by an XML parser. Also,
XHTML has replaced HTML as a W3C
recommendation.

Advantages of HTML

HTML is more likely to be compatible with older
versions of browsers. If you are unfamiliar with
XHTML, choose HTML.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 294

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/

User Interface Elements: Standard, Menu, and Popup

Name

Attribute
Type

Default

Description

shiftenter

Boolean

“false”

By default, eWebEditPro inserts a paragraph tag (<p>)
when the user presses <Enter>.

To change this behavior so that a linebreak

appears when the user presses <Enter>, set it to true.

publishview
assource

Boolean

“true”

Prevents content from being saved in “View As HTML”
mode. If publishviewassource=""false", the
editor switches to WYSIWYG mode when the user
saves the content. This lets the user review the content
‘s format before saving.

The default value, “true”, allows the content to be
saved “as is” when in View As HTML mode.

default div on
enter

Boolean

“false”

If set to true, a <DIV> tag is inserted when a user
presses <Enter>, instead of a <P> tag. (This only
occurs if there is no preceding <P> tag.)

By default, a <DIV> tag has single spacing between
paragraphs, while <P> tags have double spacing,
unless otherwise specified in a style sheet.

See Also: "shiftenter” on page 295

If shiftenter is set to true, this attribute is ignored.
Also, if a user presses <Enter> after a <DIV> tag,
another <DIV> tag is inserted, regardless of how this
attribute is set. This is the browser's default behavior.

continuepara
graph

Boolean

”

“false

If set to true, removes the leading <P> (or <DIV>) tag
and its corresponding closing tag. This is useful when
the content will be appended to an existing paragraph,
so you do not want to start a new paragraph.

maxloadsec

Number

20

Determines the number of seconds to wait for a
document to load before displaying a message that the
document is taking too long.

See Also: "docbusymsg” on page 296

This message asks the user if he or she wants to wait
or to proceed as if the loading were done. The delay is
typically caused by trying to resolve non-existent links,
but can also be caused when many editors are on a
page and share document processing time.

This attribute lets the developer control how long to
wait before showing the warning. For example, if you
know that the page has many editors that take a long
time to load, increase this value to increase the time
that elapses before the warning appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 295

User Interface Elements: Standard, Menu, and Popup

Name Attribute Default Description
Type
docbusymsg Boolean “true” Specifies whether to display the Document is busy

dialog. This dialog appears when ewebEditPro is
busy resolving an address, processing document
objects, etc. and cannot fully load a document. The
waiting time is set via the maxloadsec attribute.

See Also: "maxloadsec” on page 295

If this value is “true” and the wait period elapses, the
“Document busy” dialog appears. The user can wait for
the document to load or continue without waiting.

If the value is false and the wait period elapses, the
dialog does not appear, and the document does not
load into ewebEditPro. The editor assumes the user
does not want to wait for the document to complete
loading.

Warning: If the document has not completed
processing, the retrieved document may be empty. So,
you should only set a false value when you know the
content can be successfully retrieved. Instead of using
this attribute, it's better to use the maxloadsec
attribute to increase the wait time.

style
Defines style sheet and controls other aspects of style sheet implementation.

Element Hierarchy

<config>
<features>
<standard>
<style>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 296

User Interface Elements: Standard, Menu, and Popup

Attributes
Name Attribute Default Description
Type

publishstyles Boolean “false” Determines whether style sheet specifications for each
tag are inserted into file when the content is saved.
See Also: "Saving Style Sheet Tags When Content is
Saved” on page 371

href string [eWebEditPro Sets the location of the style sheet.

Path)/ See Also: "The Default Style Sheet” on page 368
ektnormal.css

preserveword Boolean “true” Determines whether Word style attributes (those with

styles so- in them) are preserved when Microsoft Office 2000
or later content is pasted into the editor.
See Also: "Preserving Tags When Office Content is
Pasted” on page 370

preserveword Boolean “true” Determines whether Word class tags are preserved

classes when Microsoft Office 2000 or later content is pasted
into the editor.
See Also: "Preserving Tags When Office Content is
Pasted” on page 370

wrapstylewith Boolean “true” Determines what to do when a user applies a generic

div style class to text surrounded by blocking tags.
See Also: "Inserting span or div Tags” on page 371

Example

<style publishstyles="false" href="[eWebEditProPath]/ektnormal .css" equivClass="strict"
wrapstylewithdiv="false" preservewordstyles="false" preservewordclasses="true">

</style>

toolTipText

Element Hierarchy

<config>
<features>

Defines the tool tip text that pops up when the cursor hovers over an icon.

[&
Cul

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 297

User Interface Elements: Standard, Menu, and Popup

<standard>
<command>
<toolTipText>
Attributes
Name Attribute Type Default Description
enabled Boolean Yes Is the element enabled?
localeRef String Used as an identifier to translate the
element’s #text attribute.
See Also: “Translating Button Captions and
Tool Tips” on page 180
text String The text in the tool tip.
Example

<command name="cmdLeft" style="2" visible="true">

</command>

<image key="Left" />
<caption localeRef="btnTxtal''>Left</caption>
<toolTipText localeRef="btnal">Align Left</toolTipText>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 298

Button Images

Images are available to be placed on buttons. Assign an image element to a
command to specify the image appears when the command is selected.

See Also:
® “Changing the Image that Appears on a Toolbar Button” on page 178
® ‘“image” on page 281

® “Images Supplied by eWebEditPro” on page 299

Formats Supported
eWebEditPro supports the following image formats.
® Windows Bitmap
® GIF
* JPEG

Sources of Images

There are two sources of images, and two kinds of image command
elements.

® Images supplied by eWebEditPro - Specify these by entering the
image command’s key attribute.
For example: <image key="cut'/>

In this example, cut is the keyword that specifies the image. For a list of
standard image keywords and associated images, see “Images
Supplied by eWebEditPro” on page 299.

® Images from another source, such as those created by your
organization - specify these by entering a URL using the image
command’s src attribute. The URL can refer to a local or remote
location.

For example:

<image src="http://www.yourcompany.com/images/mycut.gif" />

If an image has a key and an src value, the src attribute overrides the key.

For more information, see "Creating Your Own Images” on page 308.

Images Supplied by eWebEditPro

The table on the following page lists the image keywords and associated
images supplied by eWebEditPro. Some images are only available if your

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 299

Button Images

organization has purchased WeblmageFX. These are indicated by an asterisk(*).

NOTE Note that eWebEditPro also supplies a set of special characters that can appear
on toolbar buttons. See "Special Character Commands” on page 212.

about - <

® abovetext -

0=
® absmode - ¢

® abspos - Lk

® additem - h

® alert- B
® audio - @
® back - !i

® backward - =

® halloon - -
® Dbar- |
e pbtn - B

® belowtext -

® bgcolor - %

® Dblank -

® *plur- ﬂ

e bold- B

® bookmark - rh
® booksl - IH

® books2 - ﬂ“

® books3 - ‘

® borders - EH

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 300

Button Images

s

b *brightness-lc.:‘x'
® browse - ‘%

® pull-'*

® hullets - ==

® camera - sl

e« cellprop - &
e center- =
® charsmenu - E.

® checkl- ¥

® checkbox - v

® choice - 53&

® clean - &

® close - EL*

® *colordepth - '8
® comment - 2

® *contrast - 4

. copy-
* *crop - 11
® cut- d

* dagger - T
® ddagger - I
® (del- @

® delete - X
e delrow - =*
® (details - %

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 301

Button Images

® default - m
e delcell -
® delcol - LUJ

e *dimensions - ¥+*
® *digitalcamera - @_‘?‘
® dnload - Q

® droplist - @

e erase- %

® *eraser - &

® euro - £

&’

® eyeglasses - "%,
® faceplain - @
® facesad - @

® facesmile - @

® fgcolor - Ti
® fileup - @

e find - A

® findnext - '!.

e floodfill - &

e floppy - =

® fnof - f

* fontcolor - é
< fontcolor2 - Aﬂ
* fontcolpal - ;@

® fontface - Av

A
® fontsize - Av

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 302

Button Images

® form - 0

* forward - Lh

* freehand - (%’

* front- Th
* glyphs- =
® hellip---
® help- T

® helpwhat - n?

* hiddenfld - I_

® ijliter - &
® hiliterl - ﬁ
e hiliter2 - &

e *horizflip - + %
® horzrule - =
® hyperlink %

® hyperlinkstar - %

artn
i

® indentleft -

e
i

® indentright -
® info - @
® *information - o

- ins-@

(=}
.]
® jnscell -8

(R

*® inscol- M

|
® jnsrow - =F

® nstable - Y

e talic- £

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 303

Button Images

® justify -
® key-*m
® |dquo -

® Jink- ==
- Iock-E

® Jtrblock -
e ltredit - @B
® mail - fF

® math

® mergecell - E=

® msword -

® pewwin - tl
® nojustify - =

® *normalview - @

e note- Bl

41—

® numbered - =

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 304

Button Images

* oelig- *®

® oeoelig - &
® one-

u
e open-l=

® optionbox - o
® *oval - ®

® page -

® pagetag - [
® ‘“*palette - ﬂ
® paperclip - [l]J

® paste - e

® “*pastenew
hd pastetext-

® pencil - 7

® pencill - ,@
® pencil2 - %
® permil - il
® picture -
® plain - A

® *polygon - A

* preview - B

® print - =

® properties -
® pwdfld - W

® question - @

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 305

Button Images

® rbtn - R

EE]

® rdquo -
® *rectangle - L

® redo - £
® removelink - %

® removestyle - @

® right -
e otate - 49

® rsaquo-*

"

® rsquo -
* rlblock - =
® rtledit -

® save - E

® saveall - ﬁ

® *saveas - ﬁ

® sbtn - S

et

® scaron- &

e select - =t

® selectall - E

® selectnone - E
® setup - @

® snapgrid -vtt

® space -]

® spellayt - %5

® gpelicheck - v

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 306

Button Images

® gplitcell - B3

® *spraycan - B

® sscaron - S

® strikethrough - #
® subscript - 2

® superscript - x
® table -

® tablemenu -

* tableprop - gk
- table508 -

e text- 1

® textbox -
® textfld - IE
® three -

® thumbnail - E
® timer -
® trade - M

® *twain - ?

® two-

® underline - u
e undo- *¥*

® upllvl-

® “*ypdate - @
® upload - ﬁ‘

.t
* vertflip - +=

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 307

Button Images

® vidcam - iy

® viewprop - f

® wand - \%

® warning - i
* world - ®
® world2 - @
® yyuml - T

e

® zcaron- &

® zoomin - ':':"l

® zoomout - 'El

® zordermenu - ﬂ

® zzcaron - z’

Creating Your Own Images

You can create your own custom button images for the eWebEditPro toolbar.

To create a new button image or modify an existing one, you can use any
commercially available paint program that can produce GIF files.

By convention, button image file names start with "btn".

See Also: “Changing the Image that Appears on a Toolbar Button” on page 178

Image File Extensions

Although the graphic file for a toolbar button is usually a GIF (.gif) file, it can also
be a Windows bitmap (.bmp), or a JPEG (.jpg) file. Windows bitmap files are
larger than GIF and, therefore, take longer to download. JPEG files are optimized
for photographs and images and usually do not display a small icon clearly. As a
result, the GIF file format is preferred.

Size of Button Images

Although a button image can be almost any size, the standard size provided with
eWebEditPro is 16 by 16 pixels. If you wish, you could create buttons of a larger
uniform size, as is common with Microsoft Internet Explorer, but the eWebEditPro
toolbar would occupy more space on your Web page.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 308

Button Images

Background Color of Button Images

Also, a button image’s background color should conform to the Windows'
background color for buttons and other 3D objects. Any pixel that is gray (hex
value COCOCO) will display as the Windows' button (3D Objects) color.

Button Image Specification Summary

Image Value Comments
Attribute
File Format GIF JPEG (JPG) and Windows Bitmap (BMP) also supported.
Width 16 pixels Any size is possible; this is the standard size.
Height 16 pixels Any size is possible; this is the standard size.
Background RGB: 192, Other colors do not conform to the Windows' background color.
Color 192, 192; Hex:
C0oCcocCo
File name btn The prefix is only a convention, not a requirement.
prefix

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 309

Managing Tables

eWebEditPro’s configuration data lets you determine whether users can
enter tables into the editor. If you decide that they can, you can restrict the list
of commands that users can perform on them. For example, you may decide
that users cannot add or remove columns. You can also customize the tables
menu and the tables toolbar menu.

NOTE You cannot customize the context-sensitive menu.

In addition, you can specify default values for the Insert Table dialog box, and
control the responses that users can enter into the Horizontal Alignment
and Vertical Alignment fields of the Table and Cell properties dialog boxes.

This section explains
® whether users can enter tables into the editor
® how to customize the table and cell property dialogs
® how to restrict the list of table options
® how to customize the options on the
— tables menu
— table toolbar menu
® setting default values for the Insert Table dialog box

® controlling the responses for the Horizontal Alignment and Vertical
Alignment fields

The Table Element of the Configuration Data

Defines options that appear on table menus.

Element Hierarchy
<config>
<features>
<table>

Child Elements

cmd

Attributes

none

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 310

Managing Tables

Allowing Users to Create Tables
To allow users to create tables in the editor, set the enabled attribute of the table

command to true. If you set enabled to false, the Insert Tables button () and
the table menus do not appear.

Below is the section of the configuration data that enables users to create tables.
See Also: “Table Commands” on page 207

<table enabled="true"
visiblelayoutframe="true"
visibleborderframe=""true"
visiblebackgroundframe="true"
visibleaccessibilitybtn="true"
visiblecellaccessibilityframe="true"
<cmd name="‘cmdtable" key="tablemenu” ref="mnuTbl"/>
<cmd name="cmdinserttable" key="instable" ref="mnulTbl"/>
<cmd name="cmdinsertrow” key="insrow" ref="mnulRow"/>
<cmd name="‘cmdinsertcolumn®” key="inscol" ref="mnulCol"/>
<cmd name="cmdinsertcell" key="inscell" ref="mnulCell"/>
<cmd name="‘cmddeleterows”™ key="delrow" ref="mnuDRow"/>
<cmd name="cmddeletecolumns" key="delcol" ref="mnuDCol"/>
<cmd name="‘cmddeletecells" key="delcell" ref="mnuDCell"/>
<cmd name="cmdmergecells” key="mergecell"” ref="mnuMC"/>
<cmd name="‘cmdsplitcell” key="splitcell” ref="mnuSC"/>
<cmd name="‘cmdtableproperties” key="tableprop" ref="mnuTProp'/>
<cmd name="cmdcellproperties" key="cellprop” ref="mnuCProp"/>
</table>

Customizing the Table Dialogs

Within the <table> element of the configuration data, five properties let you
control the appearance of the Insert Table and Cell Properties dialogs.

<table enabled="true"
visiblelayoutframe="true"
visibleborderframe=""true"
visiblebackgroundframe="true"
visibleaccessibilitybtn="true"
visiblecellaccessibilityframe="true"

They are described below.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 311

Managing Tables

Attribute

Determines whether
this section of the
screen appears

Example of screen section

visiblelayoutframe

Layout area of Insert Table
dialog

nsert Table

— Size
B oz IE
LColumns: I3
[I:a_l,lcnut
wiidth: IWDZ
" Mat Specified
{* Perzent
{~ Pixels

Horizontal Alighment:

center y

visibleborderframe

Borders area of Insert Table
dialog

Ok,
Cancel
Accessibiliy

#Borders Ty

v Usze Default Colar

[T

Border Calor: E;EEEEEE

Border Size:

Cell Padding:

Cell Spacing:
M S

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 312

Managing Tables

Attribute Determines whether Example of screen section
this section of the
screen appears

visiblebackgroundframe Custom background area
of Insert Table dialog

— Custom B ackground

EBackground Colar; e H

B ackground [mage:

visibleaccessibilitybtn Accessibility button of
Insert Table dialog

]9

Cancel

l Aceszibilit l

-Baorders |

visiblecellaccessibilityframe Accessibility area of Cell
Properties screen (Bl

v Usze Default Colar

Border Color:

r.-a.ccessil:-ilit_l,l

Abbresviation:

Categornies:
\ J

Restricting Table Options

If you want to let users insert tables but determine which commands users can
perform on them, remove unwanted commands from between the <table> tags
of the XML configuration data. (To learn about table commands, see “Table
Commands” on page 207.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 313

Managing Tables

For example, to remove the Insert Row and Delete Rows commands, delete the
two lines indicated by strikethrough below.

ttable anabled="tru="q[

tewtcmd name="cmdtable" key="tablemenu" ref="cmdThl"S 0

vewtomd mame="cmdinzerttable" hkey="instable" ref="mnuaIThl "/]
TR L e e e e e T e S S e |

tewtomd name="cmdin=ertcolunn” key="in=col" ref="wmmulICol "/
tewtomd mame="cmdinzertcell" key="in=cell" ref="mmulICell "/
et e e e e e e o e e R e T
vewtcmd name="cmddel etecolunn=s" key="delcol" ref="mnulCal "]
tewtomd mame="cmddel etecell=" hkey="delcell" ref="mmuDCall"/>]
tewemd name="cmdmergecalls" hey="margecell" ref£="mrolIC"S T
tewtcmd name="cmdspl itcell" key="splitcell" ref="wmuIC"/
tewtcomd mame="cmdtabl epropertie=s" key="tableprop" ref="mruTFrop"/ 1
<cmd name="cmdcellpropertie=s" keay="cellprop" ref="mruaCFrap "S>

ftabl]

Commands removed from this list do not appear on menus that list table options.

Customizing the Tables Menu

If the cursor is within a table when a user clicks the Insert Tables button (), a
menu of options appears (illustrated below).

Inzert Table...
Inzert Fow

Inzert Column
Insert Cell

Delete Rows
Delete Columnz
Delete Cellz
terae Eells

Split Cell

T able Froperties. ..

o [[e B o S D

Cell Properties...

NOTE Commands that cannot be performed are “grayed out.” For example, because
only one cell is selected, the Merge Cells option is grayed out.

To restrict the options on this menu, edit the list of commands between the
<popup name=""tablepopup'> tags in the configuration data. (To learn about
the table commands, see “Table Commands” on page 207.)

For example, to remove the Insert Row and Delete Rows commands, delete the
two lines indicated by strikethrough below.

<popup name=""tablepopup">
<caption localeRef="cmdTbl"/>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 314

Managing Tables

<button command="cmdinserttable'/>
<button—command="cmeHnsertrow-/>
<button command="cmdinsertcolumn'/>
<button command="cmdinsertcell"/>
<button—command="cmddeleterows"/>
<button command="cmddeletecolumns'/>
<button command="‘cmddeletecells"/>
<button command="‘cmdmergecells"/>
<button command="cmdsplitcell*/>
<button command="‘cmdtableproperties'/>
<button command="‘cmdcellproperties"/>-->
</popup>

Customizing the Tables Toolbar Menu

NOTE

The tables toolbar menu appears if the user adds it to the toolbar or the menu’s
visible attribute is set to true in the configuration data. (To learn how users add
to the toolbar, see “Customizing Your Toolbar” in the eWebEditPro User Guide.)

If the user displays the tables toolbar menu, its default appearance is below.

J-l LA TIaudIL L . g . LIz 19

JE#??%??EE@@

Commands that cannot be performed are “grayed out.” For example, because
only one cell is selected, the Merge Cells option is grayed out.

To restrict the options on this menu, edit the list of commands between the <menu
name="tablebar"> tags in the configuration data. (To learn about the table
commands, see “Table Commands” on page 207.)

For example, to remove the Insert Row and Delete Rows commands, delete the
two lines indicated by strikethrough below.

<menu name="tablebar"™ newRow=""true'" showButtonsCaptions="false"
wrap="false" visible="false">
<caption localeRef="cmdTbl"/>
<button command="‘cmdinserttable"/>
———<button command="cmdinsertrow"/>
<button command="cmdinsertcolumn"/>
<button command="cmdinsertcell'/>
——<button command="cmddeleterows"/>
<button command="cmddeletecolumns"/>
<button command="‘cmddeletecells'"/>
<button command="‘cmdmergecells"/>
<button command="‘cmdsplitcell"/>
<button command="‘cmdtableproperties'/>
<button command="cmdcellproperties'/>
</menu>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 315

Managing Tables

Setting Default Values for the Insert Table Dialog

You can customize the default values that appear in the Insert Table dialog box.
To do this, enter a text data argument of HTML table attributes when sending the
command in JavaScript.

For example:
if ("jsinstable” == strCmdName)
var strAttrs = "rows=6 cols=3 width="75%" bgcolor="cyan*

border=2 borderColor=navy cellpadding=2 cellspacing=3 rules=cols";
eWebEditPro. instances[sEditorName].editor.ExecCommand(‘‘cmdinserttable”, strAttrs, 0);

return(true);

}

In this example, the Insert Table dialog box is launched when the user presses a
custom button whose command is jsinstable.

The table dialog box will appear with default values specified in the attributes
string. The number of rows and columns can be specified using the pseudo
attributes 'rows' and 'cols' respectively. You can also specify attributes that do not
appear in the dialog, such as rules=""cols” in the above example.

The following table explains how to set a default value for each field in the Insert
Table dialog.

Field How to Set Default Value

Rows rows=number of rows

Columns cols=number of columns

Width width=number of pixels or percentage

Horizontal See “Controlling Alignment Field Responses” on
Alignment page 317

Border borderColor=color name or hexadecimal code
Color

Border Size border=number of pixels

Cell cellpadding=number of pixels
Padding

Cell Spacing cellspacing=number of pixels

Background bgcolor=color name or hexadecimal code
Color

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 316

Managing Tables

Field How to Set Default Value

Background background=url of image
Image

Entering the Sample Code

Enter the sample code in a customevents.js file, in a onexeccommand handler
function (for details, see “Creating a Custom Command” on page 215). The
command is executed when the user selects it from a custom dropdown list or
presses a custom button.

To learn how to create a custom dropdown list, see “Creating a Popup Menu” on
page 181.

To learn how to create a custom button, see “Creating a Custom Command” on
page 215.

Controlling Alignment Field Responses

In the configuration data, you can determine the possible responses and a default
response for the following fields.

Dialog Fields

Box

Table Horizontal Alignment

Properties

Cell Horizontal Alignment, Vertical Alignment
Properties

NOTE You can only enter one set of responses for both Horizontal Alignment fields. In
other words, you cannot specify one set of responses for the Horizontal Alignment
field in the Table Properties box and a different set for the Horizontal Alignment
field in the Cell Properties box.

Controlling Responses for the Horizontal Alignment Field

To specify the list of responses for the Horizontal Alignment field, add the
following code between the <table> tags in the configuration data. In this
example, center is designated as the default response, because it has the
default=""true" attribute.

<selections name="align">
<listchoice value="left" localeRef="tbIHAL"/>
<listchoice value="center" localeRef="tbIHAC" default="true"/>
<listchoice value="right" localeRef="tbIHAR"/>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 317

Managing Tables

<listchoice value="justify" localeRef="tblIHAJ"/>
<listchoice/>
</selections>

Controlling Responses for the Vertical Alignment Field

To specify the list of responses for the Vertical Alignment field, add the following
code between the <table> tags in the configuration data. In this example, middle
is designated as the default response, because it has the default=""true""
attribute.

<selections name="valign">
<listchoice/>
<listchoice value="top" localeRef="tbIVAT"/>
<listchoice value="middle" localeRef="tblVAM" default="true"/>
<listchoice value="bottom" localeRef="tblVAB"/>
<listchoice value="baseline" localeRef="tbIVABL"/>
</selections>

To remove any response from the list, delete the line. To change the default, move
default=""true" to the desired alignment value.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 318

Fonts and Headers

The font and header commands, listed below, let you specify font sizes, font
styles and heading levels.

® fonts

® fontname
® fontsize

® headings
® heading[x]

See Also: “Determining which Fonts, Font Sizes, and Headings are
Available” on page 182.

fonts

The section that specifies the font names and sizes that users can apply to
text in the editor.

The font element provides one way to define font information. However, the
preferred way is to use a selections element group to generate a list of fonts
and commands to set them.

Element Hierarchy

<config>
<features>
<standard>
<fonts>
Attributes
Name Attribute Type Default Description
enabled Boolean True If false, the font listing is not
used.
fontname

Specifies the name of a font. The font is added to the font list made available
to the user.

The name specified in the text attribute is exactly what is placed in the font
tag. Be sure to use font names that browsers can interpret.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 319

Fonts and Headers

Remarks

The fontname element is one way to define a set of font names. However, the
preferred method is to use a selections element group to define available font

names.

Here is an example of the preferred method of defining font names.

<command name="cmdfontname" style="list" visible=""true'>
<toolTipText localeRef="btnfntnm">Font Name</toolTipText>
<selections name=""fontnamelist" enabled="true" sorted="true">

<listchoice>Arial,
<listchoice>Courier</listchoice>

Helvetica</listchoice>

<listchoice>Microsoft Sans Serif, Sans Serif</listchoice>

<listchoice>Symbol</listchoice>

<listchoice>Times New Roman</listchoice>

<listchoice>Verdana</listchoice>
<listchoice>Webdings</listchoice>

</selections>
</command>

Element Hierarchy

<config>
<features>

<standard>

Attributes
Name Attribute Type Default Description
enabled Boolean True If false, the font is not used.
#text String The text that the user views
to select a font; also, the text
placed into the font tag as
the font name.
fontsize
Defines a font size that users can apply to text within the editor.
Remarks

Below are the font size commands available. These commands control the setting
of the font size. They do not need to be defined in the feature as commands.

They are available for list box commands and scripting.

* cmdfontsizel
® cmdfontsize2

® cmdfontsize3

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 320

Fonts and Headers

cmdfontsize4
cmdfontsize5
cmdfontsize6

cmdfontsize7

The fontsize element is one way to specify font sizes. However, the preferred way
is to use the selections element group to generate a list of fonts and commands to
set them. Here is an example use of the preferred method.

<command name="‘cmdfontsize"” style="list" visible="true'">

<image key="fontsize" />
<toolTipText localeRef="btnfontsz">Font Size</toolTipText>
<selections name=""fontsizelist" enabled="true" sorted="true">

<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
</selections>

</command>

Element Hierarchy

command=""cmdfontsize7'">7 pt</listchoice>
command=""cmdfontsize6'>6 pt</listchoice>
command=""cmdfontsize5">5 pt</listchoice>
command=""cmdfontsize4'>4 pt</listchoice>
command=""cmdfontsize3">3 pt</listchoice>
command=""cmdfontsize2">2 pt</listchoice>
command=""cmdfontsizel'">1 pt</listchoice>

<config>
<features>
<standard>

Attributes

Name Values Default Description

enabled Boolean True If false, the font size is not used.

localeref String The identifier to translate the #text description.

name String "3" The name of the font. It must be a value from 1
through 7. 1 is the smallest font, 7 is the largest.
Fonts of any other names are not used.

#text String The text that defines the font. This text appears on
the dropdown list but is not inserted into the font
tag.

headings

The section that specifies the heading levels for paragraphs.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 321

Fonts and Headers

Element Hierarchy
<config>
<features>
<standard>
<header level>

Attributes
Name Attribute Type Default Description
enabled Boolean True If false, the heading listing is
not used.
heading[x]
Defines a heading level. The [x] value in the name must be between, and
including, 1 and 6. Any other values are not read in.
These are the heading names.
® headingl
® heading2
® heading3
® heading4
® heading5
® heading6
Remarks

Below are the heading commands available to list boxes and buttons. These
commands control the block header type.

® cmdheadingl
® cmdheading2
® cmdheading3
® cmdheading4
® cmdheading5

® cmdheading6

cmdheadingStd (returns text to normal)

They do not need to be defined in the feature as commands. They are available
for list box commands and scripting.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 322

Fonts and Headers

Although you can use the heading[x] element to define block header levels, the
preferred method is to use a selections element to generate a list of options with
commands.

Here is an example of the preferred way of defining available header levels.

<command name="cmdheaderlevel’” style="listbox" visible="true">
<image key="headerlevel"” />
<caption localeRef="btntxthdrlvl'></caption>
<toolTipText localeRef="btnhdrivl"”>Set the header level</toolTipText>
<selections name="headinglist"” enabled=""true" sorted="true'>
<listchoice command="cmdheadingl”™ localeref="hdgtxtlvl1l">Heading 1</listchoice>
<listchoice command="cmdheading2" localeref="hdgtxtlvl2">Heading 2</listchoice>
<listchoice command="cmdheading3" localeref="hdgtxtlvIl3">Heading 3</listchoice>
<listchoice command="cmdheading4" localeref="hdgtxtlvl4">Heading 4</listchoice>
<listchoice command="cmdheading5" localeref="hdgtxtlvIl5">Heading 5</listchoice>
<listchoice command="cmdheading6"” localeref="hdgtxtlvl6">Heading 6</listchoice>
<listchoice command="cmdheadingstd" localeref="hdgtxtnorm">Normal</listchoice>
</selections>
</command>

Element Hierarchy
<config>
<features>
<standard>
<headings>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 323

Fonts and Headers

Attributes

Name Attribute Type Default Description

enabled Boolean True If false, the heading listing is
not used.

Localeref String The translation of the #text
description.

Name String These commands control
the header levels.

Headingl - "heading 1"
Heading2 - "heading 2"
Heading3 - "heading 3"
Heading4 - "heading 4"
Heading5 - "heading 5"
Heading6 - "heading 6"

#text String Text description of the
header. This value is
included in the header level
listing.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 324

External Features

Description

Use the external feature of the configuration data to extend the editor by
defining external client functionality. This includes applications, JavaScript,
and Visual Basic (VB) script.

You use the command element to define commands that execute the external
code.

Element Hierarchy

<config>
<features>
<external>
Attributes
Name Values Default Description
enabled Boolean True If false, external commands
are disabled.

Adding External Features

Examples

<?xml version="1.

<config product=
<features>
<external

You can quickly add functionality to eWebEditPro using JavaScript or Visual
Basic. External commands defined are sent up as external events. This is a

powerful way to define features without requiring the development of binary

modules.

See Also: “Custom Commands” on page 215

Follow these guidelines when creating external features.

® Define the new functionality as a command within the <external>
section of the configuration data.

® This section acts as the definition for the External Event feature.

® Follow all rules for defining standard features.

Here is an example of the external script/client command definition.

0" encoding=""1s0-8859-1"7?>

‘eWebEditPro"™ version="4" revision="1">

enabled=""true">

<I--This is a user defined command that will go back up to the script-->

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 325

External Features

<command name="'saveaspdf' style="0" visible="true">
<image key=""http://site.com/images/pdf.gif'/>
<caption localeRef="btnScrPdf"> Safe as a PDF file.</caption>
<toolTipText localeRef="btnPdf''>Saves as PDF.</toolTipText>
</command>

</external>
</features>

</config>

Here is an example of a custom module creating its own section within the
features.

<?xml version="1.0" encoding="is0-8859-1"?>
<config product="eWebEditPro" version="4" revision="1">
<features>
<pdfgenerator enabled="true'">
<!--This is a user defined command sent to a DLL-->
<image key="http://site.con/images/pdf.gif'/>
<caption localeRef="btnScrPdf''>Safe as a PDF file.</caption>
<toolTipText localeRef="btnPdf">Converts to PDF.</toolTipText>
</command>
</pdfgenerator>
</features>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 326

Viewing and Editing HTML Content

This section describes elements that let users view and edit the HTML
content of their Web page.

The ViewAs Feature

The ViewAs feature determines whether or not users can view the HTML
source code. If you allow users to view source code, they do so by right-
clicking the mouse while the cursor is in the editor. When they do, two menu
options appear.

® View HTML - lets the user view the source code

® View WYSIWYG - returns the user to edit mode

If you allow users to view source code, you can further specify if they can
view only the body of the page or the entire page including the header.

Disabling Custom Toolbar Buttons View as HTML Mode

The following JavaScript is an example of how to disable (or gray-out) custom
toolbar buttons when the user selects "View As HTML". And, how to re-
enable buttons when the user switches back to “View WYSIWYG".

1. Add the following to customevents.js or the page with the editor.

2. Specify the names of the commands in the myCustomCommands array.
var myCustomCommands = ["jsmycommandl', " jsmycommand2",
"'jsmycommand3™] ;
function myUpdateButtonStatus(sEditorName, strCmdName, strTextData,
IData)
{
var bDisable = (“cmdviewashtml'™ == strCmdName);
var objlInstance = eWebEditPro.instances[sEditorName];
var objMenu = objlnstance.editor.Toolbars();
var objCommand = null;
for (var i = 0; i < myCustomCommands.length; i++)
{
objCommand = objMenu.Commandltem(myCustomCommands[i])
it (objCommand)
{
objCommand.setProperty('CmdGray', bDisable);
b
3
3
eWebEditProExecCommandHandlers[“cmdviewashtml™] =
myUpdateButtonStatus;
eWebEditProExecCommandHandlers["cmdviewaswysiwyg'] =
myUpdateButtonStatus;

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 327

Viewing and Editing HTML Content

Element Hierarchy

<config>
<features>
<viewas>

Child Elements

cmd

Attributes

Name Attribute Type Default

Description

enabled Boolean True

If false, users cannot view the content in different
formats.

mode String Body

Specifies how much of the source code appears
when the user views HTML. This attribute has two
values.

"Body" - only the body of the document
“Whole” - the entire source, including headers

publish String Cleanhtml

The level of cleanliness applied when the user
chooses ViewHTML. The higher the level, the
potentially more time to process the source. This
attribute has three values.

Important: If you are using ewebEditPro with an
Ektron CMS, leave this setting as xhtml.

"Minimal" - General tag organization

“Cleanhtml” - Removes overlapping tags and
merges font tags

"Xhtml" - HTML level of organization

unicode Boolean False

If true, Unicode characters appear as their
character reference (for example, ֪).
Otherwise, they appear as question marks (?).

See Also: "Viewing and Saving Unicode
Characters” on page 355

The EditHTML Feature

The EditHTML feature determines whether or not users can edit the HTML source
of the content by right clicking the mouse and choosing Insert HTML. If content is

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 328

Viewing and Editing HTML Content

selected when the users clicks Insert HTML, that content appears in the dialog
box and can be edited.

Users can also use Insert HTML to enter an HTML fragment at the current cursor
location.

NOTE Even if you set edithtml to false, users can edit the HTML source via the
ViewAs feature. See Also: "The ViewAs Feature” on page 327

Element Hierarchy

<config>
<features>
<edithtml>
Attributes
Name Attribute Type Default Description
enabled Boolean True If false, the editHTML
feature is disabled.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 329

Form Elements

Description

Let the user create an HTML form.

See Also: In the eWebEditPro+XML User Guide: “Form Elements Toolbar” in

the chapter “Toolbar Buttons”

Element Hierarchy

<config>
<features>
<formelements>
Attributes
Command External Description
Name
cmdformform Form Inserts opening and closing form tags. For example:
<form name="Test" action="http://localhost/
ewebeditpro5/formtest.htm”™ method="post'>
</form>
cmdformbutton Button Inserts a button. For example:
<input type="button" value="Test Button"
name="Test" />
cmdformsubmit Submit Inserts a submit button. For example:
Button

<input type="submit" value="Submit"” />

cmdformreset

Reset Button

Inserts a reset button. For example:
<input type="reset" value="Reset Page" />

cmdformhidden Hidden Text Inserts a hidden text field. For example:
Field <input type="hidden" value="This is initial
content" name="mycontent" />
cmdformtext Text Field Inserts a text field. For example:
<input size="15" value="This is initial
content" name="mycontent" />
cmdformpassword Password Inserts a password field. For example:
Field

<input type="password" value=
name="mypassword" />

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1

330

Form Elements

Command External Description
Name

cmdformtextarea Textarea Inserts a textarea field. For example:
Field

<textarea name="mycontent" rows="5"
cols="40">This is initial content</textarea>

cmdformradio

Radio Button

Inserts a radio button. For example:

<input type="radio" checked="checked"
name="mybutton" />

cmdformcheckbox Checkbox Inserts a check box. For example:
<input type="checkbox" checked="checked"
name="mycheckbox" />

cmdformselect Select Inserts a selection box. For example:
<select multiple="multiple" size="25"
name="myselectbox'>
<option value="optionl'">optionl</option>
<option value="option2">option2</option>
</select>

cmdformfile File Upload Inserts a File Upload field and a Browse button. For

example:
<input type="file" size="10" name='"Save" />

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

331

Cleaning HTML

eWebEditPro provides the following elements that prepare the HTML code of
the Web content for publishing.

® clean
® remove, a sub element of clean

® endtag, attribute, tagonly, tagWoAttr and tagelement: sub-elements of
remove

The clean feature defines general HTML clean-up features, such as the
quality of the HTML code output by the editor.

You can use Remove, Endtag, Attribute, Tagonly, Tagelement, and TagWoAttr
elements to remove specific elements from the content when it is cleaned.

Clean Element Hierarchy

=

Interface Features
clean
zsltFilter remove
| [[[|
endtay attribute tagonly tagelement taguol tr

Providing User Access to the Clean Feature

By default, the command that launches the clean feature (cmdclean)
appears on the context-sensitive menu.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 332

Cleaning HTML

Cut
Copy
Paste

Select Al

[Ceonri. |

Hyperlink...

[rzert HTHRL. .

v View as WYSIWYG
View az HTML

Picture...

However, you can assign the command to a button, just as you can assign any
other command to a button (see “Commands” on page 157).

The user also receives an option to clean HTML when pasting content from
Microsoft Word 2000.

Clean Element

The clean HTML feature ensures that the content loaded into the editor is
readable and concise HTML source code.

Element Hierarchy
<config>
<features>
<clean>

Child Elements
remove

xsltFilter

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 333

Cleaning HTML

Attributes

Name Attribute Default Description
Type

charencode String "charref" Determines how to encode special and extended
characters. Five values are available.

* binary

* entityname
» charref

* special

* latin

For more information, see "Encoding Special
Characters” on page 354.
See Also: "preservechars” on page 337

cr String “cr How to translate the carriage return character when the

content is saved. Four values are available.
" - remove cr character
"cr" - do not process cr characters

"charref " - replace cr character with its character
reference, which s 

"\r" - replace cr character with \r

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 334

Cleaning HTML

Name Attribute Default Description
Type
feedbacklevel String 0 Lets you control when the cleaning dialog displays.

The dialog notifies the user that ewebEditPro is
cleaning content and has not crashed.

Note: Depending on the speed of the client system and
the size of the content, cleaning can last from several
seconds to several minutes.

The attribute can have one of three values:

0 (default value) - Normal display of clean dialog.
The cleaning dialog displays if processing might take
more than three seconds. This estimate considers the
following factors: large content, XML tag processing,
image file manipulation, MS Word content cleaning,
and style sheet processing.

1- Only display clean dialog if document is large. If
the raw content exceeds the value set in the
showonsi ze attribute of the clean element, the
cleaning dialog appears when cleaning is performed.
The dialog does not appear under other processing,
such as XML tag processing, image file manipulation,
MS Word content cleaning, style sheet processing, or
other functionality.

See Also: "showonsize” on page 338

2 - Never display clean dialog. During cleaning, the
user interface and possibly the browser become

unresponsive or sluggish, and the user is not notified
why.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 335

Cleaning HTML

Name

Attribute
Type

Default

Description

hideobject

Boolean

“true”

If the value is true, the object tag is hidden and
protected from the DHTML control. (The object tag is
the HTML tag that loads an object, such as an ActiveX
control, in a browser.)

If the value is false, the object tag is not hidden and the
control tries to render the object to the user. If the
object does not exist, the editor pauses for a long time
until the operation times out. While the editor is
attempting to render, the user cannot interact with it.

The default value (true) hides the tag so there is no
chance that the editor will get “stuck.”

Here is an example setting.

<clean hideobject="true” charencode="charref"
cr="cr" If="If" showonsize="5000"
preferfonttag="false" reducetags=""true"
showdonemsg=""true" prompt="true">
<remove>

<tagWoAttr>SPAN</tagWoAttr>
</remove>
</clean>

String

u”:u

How to translate the line feed character when the
content is saved. Four values are available.

" - remove If character
"If" - do not process a If character

"charref " - replace If character with its character
reference, that is

"\n" - replace If character with \n

preferfont

Boolean

"false"

If true, span tags with font styles are converted to font
tags.

If a font name, color, or size are specified using a span
tag (for example, in content pasted from MS Word), the
span tag can be converted to a font tag. Font tags are
compatible with older browsers and allow font
attributes to be easily edited in eWebEditPro.

mswordfilter

Boolean

"false"

If true, converts Word formatting to an HTML format
where possible. For example, Word’s Heading 1 style
is converted to a set of <h1> tags.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 336

Cleaning HTML

Name Attribute Default Description
Type
preservechars String Identifies characters that will not be converted to

character references. Conversion of these characters
is done on the server side only.

When entering values for this element, enter character
references if XML requires them. Refer to an XML
reference to determine which characters require
conversion, and how to convert them.

For example, to prevent the “less than” (<) and “greater
than” (>) characters from being converted to their
character references, enter

preservechars value="<>"

For more information about special characters, see
"Encoding Special Characters” on page 354.

prompt Boolean “True” Can suppress the message that appears when pasting
content from Microsoft Office 2000 or later: HTML
code generated by Office 2000 has been
detected...Do you want to clean the HTML code
now?

To suppress the message, set the value to false.

The autoclean attribute of the <standard> element
determines whether ewebEditPro attempts to clean
content pasted from Word.

See Also: "autoclean” on page 294;

reducetags Boolean "false" Whether eWebEditPro eliminates unnecessary tags.

When a user pastes content from other applications
into eWebEditPro, the content may contain redundant
tags, such as extra font and bold tags. If this is set to
true, extra tags are combined or safely removed.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 337

Cleaning HTML

Name Attribute Default Description
Type
showonsize integer The minimum number of characters of HTML code

needed to display a dialog box that appears when the
user saves content. The dialog indicates that
eWebEditPro is cleaning HTML.

This attribute prevents the dialog box from displaying
when there is little or no content.

See Also: "feedbacklevel” on page 335

Note: This attribute does not appear in the
configuration data by default. You must enter the
attribute name and value to use it.

showdonemsg Boolean “false” Suppresses the message dialog box that appears after
cleaning: "The cleaning of the HTML source is
complete”.

You can also suppress the message when invoking the
clean command via JavaScript, but have it appear
when a user cleans content using the context menu. To
suppress the message only when calling the clean
command in JavaScript, pass a numeric data argument
of 1. In JavaScript:

eWebEditPro. instances[0] .editor.ExecCommand(**
cmdClean™, "', 1);

Remove Element

This rule defines what elements are removed from the content when it is cleaned.

Element Hierarchy
<config>
<features>
<clean>
<remove>

Child Elements
endtag, attribute, tagonly, tagelement, tagWoAttr

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 338

Cleaning HTML

Attributes

Name Attribute Type Description

There are no attributes to
the remove element.

Endtag Element

This attribute defines which elements are globally removed from content when it is
cleaned. In general, this option is not recommended. But, there may be situations
in which certain end tags (for example, </p>) are not desired and can be removed
with little risk.

eWebEditPro removes end tags when the content is saved.

This option is ignored if the publ ish attribute of the standard elementis set to
xhtml.

See Also: "publish” on page 294

You can only enter one <remove> element, but you can enter several <endtag>
elements. You must enter one set of <endtag> elements for every tag to be
removed.

Element Hierarchy

<config>
<features>
<clean>
<remove>
<endtag>
Attribute
Name Attribute Type Description
#text String The tag to remove.
Example
<clean cr="cr" If="If" autodetect="yes">
<remove>
<endtag>p</endtag>
<endtag>li</endtag>
</remove>
</clean>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 339

Cleaning HTML

Attribute Element

When the user cleans the content, that procedure can remove specified attributes
from the content. In general, this option is not recommended, but there may be
situations in which you want to remove certain attributes (for example, id, onclick,
etc.).

eWebEditPro removes attributes when the content is saved.

This option is ignored if the publ ish attribute of the standard elementis set to
xhtml.

See Also: "publish” on page 294

You can only enter one <remove> element, but you can enter several
<attribute> elements within it. You must enter one set of <attribute>
elements for every tag to be removed.

Element Hierarchy

<config>
<features>
<clean>
<remove>
<attribute>
Attribute
Name Attribute Type Description
#text String The attribute to remove.
Example
<clean cr="cr" If="If" autodetect="yes" >
<remove>
<attribute>onclick</attribute>
</remove>
</clean>

Tagonly and Tagelement Elements

When the user cleans the content, that procedure can remove specified HTML
tags only, or specified tags along with any content between them.

For example, you can set up the clean element to remove all font tags, image
(img) tags, and script elements.

You can only enter one <remove> element, but you can enter several
<tagonly> and <tagelement> elements within it.

Element Hierarchy
<config>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 340

Cleaning HTML

<features>
<clean>
<remove>
<tagonly>
<tagelement>
Attribute
Name Attribute Type Description
#text String The tag to remove.
Example

<clean cr="cr" If="I1f" autodetect="yes" >
<remove>

<tagonly>font</tagonly>
<tagelement>script</tagelement>

</remove>

</clean>

TagWoALttr Element

When the user cleans the content, the cleaning can remove specified tags that
have no attributes. Use the <tagWoAttr> element to accomplish this.

For example, you can use <tagWoAttr> to remove all SPAN tags with no
attributes. If the cleaning finds SPAN tags with attributes, those tags are not

affected.

You can enter only one <remove> element, but you can enter several

<tagWoAttr> elements within it.

Element Hierarchy

<config>
<features>
<clean>
<remove>
<tagWoAttr>
Attribute
Name Attribute Type Description
#text String The tag to remove.
Example

<clean cr="cr" If="I1f" autodetect="yes" >
<remove>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 341

Cleaning HTML

<tagWoAttr>SPAN</tagWoAttr>
</remove>
</clean>

xsltFilter Element

This element is to be used with the Data Designer.

The xsItFilter element identifies an XSLT file that can modify content by
removing or replacing specific tags and attributes. Here is the default value:

<xsltFilter src="[eWebEditProPath]ektfilter.xslt"/>

NoTE [eWebEditProPath] refers to the eWebEditProPath variable in the
ewebeditpro.js file.

You can implement almost any custom change to data design content by
modifying the xsItFilter file. The following commonly- requested changes are
built into ektfilter_xslt, although they are commented out by default. To
enable the changes, remove the comment markers.

The ektfilter._xsltfile fixes the align=center to align=middle
problem. It also has include statements that refer to these XSLT files.

® ektfilterekttags.xslt - processes the following custom XML tags:
— ekt_date (displays current date)

— ekt_toc (creates table of contents using h1-h6 tags; the table of
contents entries can be either numbers or an outline)

® ektfilterxhtml10.xslt - ensures content complies with XHTML 1.0 transitional
by removing browser-specific tags and attributes

® ekffiltercustom.xslt - commonly requested custom filtering, which makes the
following replacements

— remove <DIV> tags within <L 1> tags
— convert to

— convert <I>to

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 342

The Spellcheck Feature

The spellcheck feature controls the operation of spell checking within the
client. Note that user can perform spell checking on demand or “as you type.”
For more information about the user interaction with spell checking, see the
“Checking Spelling” section of the eWebEditPro User Guide.

The feature has three elements, which are depicted on the following chart
and then summarized in a table.

spellcheck
spellayt spellingsuggestion
Command Lets You Specify
Spelicheck e Activation of the spell check feature

® The language of spelling dictionary
® Whether to use spell checker without MS Word

® A primary and secondary spell checker

Spellayt ® What triggers spell check as-you-type
® Image file that marks misspelled words

® Delay between cycles

Spellingsuggestion * Number of correctly spelled words similar to misspelled word
that appear

See Also: "Setting the Language of Spell Checking” on page 223

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 343

The Spellcheck Feature

Spellcheck

Defines whether or not the spell check feature operates, the language, and an
alternative to using MS Word for the dictionary.

Element Hierarchy
<config>
<features>
<spel lcheck>

Child Elements

spellayt, spellingsuggestion

Attributes
Name Values Default Description
enabled Boolean True If false, spell checking is disabled.
langid String 0 A Microsoft Word Locale ID (LCID) that identifies a

particular language. For example, the LCID for English
is 1033, and the LCID for Japanese is 1041.

Use this attribute to change the spelling dictionary that
eWebEditPro refers to.

If you leave the default value (0), the spell check refers
to the language selected in Microsoft Word.

Before a client PC can refer to a foreign dictionary, that
language must have been installed on the PC.

For more information, see the following article on
Microsoft's Web site: “WD2000: Supported Language
ID Reference Numbers (LCID)”

http://support.microsoft.com/default.aspx?scid=kb;en-
us;221435

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 344

The Spellcheck Feature

Name Values Default Description
dictionary or String dictionary2= This attribute provides a spell check capability that
dictionary2 does not require Microsoft Word on a client. As a
e result, users can spell check content without MS Word.
WinterTreeS

C2.CWinterTr Also, if only some users have MS Word, you can
eeSC” identify a primary and secondary spell checker. For
example, you can set MS Word as the primary spell
checker and the alternate spell check software as the
secondary.

If you identify a primary and secondary spell checker,
eWebEditPro first attempts to use the primary. If
eWebEditPro cannot find the primary, it uses the
secondary spell checker.

Both spell checkers refer to any custom dictionaries
created in MS Word. However, the alternate spell
checker only refers to an English dictionary -- it cannot
spell check foreign text as MS Word can. (See Also:
"langid” on page 344)

Controlling this Feature

Administrators control this feature through the
dictionary and dictionary? attributes of the
spellcheck element. If you want MS Word to be
used by default and only use the alternate when MS
Word is unavailable, use this syntax:

<spell check
dictionary2=EkWinterTreeSC2.CWinterTreeSC">

If you want the alternate spell checker to be used by
default and only use MS Word when the alternate is
unavailable, use this syntax:

<spell check
dictionary="WinterTreeSC.CWinterTreeSC">

The Client Installation File

You must install the SpellChecker to every client
system that will use this feature. This lightweight client
installation file associates the alternate spell checker
and its dictionary.

To download the client installation file, go to http://

www.ektron.com/support/downloads/ewebeditpro/
wintertree/spellcheckercomp.exe.

Spellayt

Defines how spell checking as-you-type operates.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 345

http://www.ektron.com/support/downloads/ewebeditpro/wintertree/spellcheckercomp.exe
http://www.ektron.com/support/downloads/ewebeditpro/wintertree/spellcheckercomp.exe
http://www.ektron.com/support/downloads/ewebeditpro/wintertree/spellcheckercomp.exe

The Spellcheck Feature

Element Hierarchy
<config>
<features>
<spel Icheck>
<spellayt>

Attributes

Name Values Default Description

autostart Boolean True If true, spell check starts to check spelling “as-you-
type” as soon as possible without user intervention.
The editor is slower to launch due to spell checking.

If false, the user must press the button or toolbar menu
option to activate spell check as-you-type.

enabled Boolean True If false, auto-spell checking is disabled.

markmisspelledsrc String Specifies the URL of the graphic file (by default, a wavy
red line) that marks misspelled words. The name of the
file provided is wavyred.qgif.

Wy

The default value (
configuration data.

) resolves to the location of the

This is interpreted as a path, so the case is maintained.

delay String 20 Auto spellcheck continually checks all of the words in
the editor’s content, from top to bottom.

This attribute sets the number of milliseconds that the
auto spellcheck feature waits when it reaches the end
of the content before restarting.

If you set a low value (such as the default, 20), the
spellcheck’s performance improves but more CPU
resources are required.

If you set a high value, the spellcheck’s performance
degrades but more CPU resources are available.

Example

<spellayt autostart="false" markmisspelledsrc="[eWebEditProPath]/wavyred.gif" delay="20" />

Spellingsuggestion

Defines suggestions for correcting spelling errors when user is using spell
checking “as-you-type.”

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 346

The Spellcheck Feature

NOTE These settings only take effect when spell checking on demand is being used.

Element Hierarchy
<config>
<features>
<spel Icheck>
<spellingsuggestion>

Attributes

Name Values Default Description

enabled Boolean True If false, the spell checker does not suggest
replacement words when user is using spell
checking “as-you-type.”

max Integer 20 The maximum number of correctly-spelled words
that appear after the spell checker finds a
misspelled word when user is using spell checking
“as-you-type.”
To view this list, right click the mouse.

Example of Spell Check Features

The following is the default version of the spell check features in the configuration
data.

<spellcheck langid="0" enabled="true" dictionary2="WinterTreeSC.CWinterTreeSC">
<spellayt autostart="false" markmisspelledsrc="[eWebEditProPath]/wavyred.gif" delay="20"/>
<spellingsuggestion enabled="false" max="4"/>
<cmd name="‘cmdspellayt” key="spellayt" ref="cmdSplayt" style="toggle'/>
<cmd name="cmdspellcheck™ key="spellcheck" ref="cmdSplck"/>
</spellcheck>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 347

Editing in Microsoft Word

The msword element enables the Edit in Word toolbar button (), which lets
users perform all editing functions within Microsoft Word®. The client
computer must have Microsoft Word 2000 or greater.

Users may prefer to edit within Word because of familiarity with Word’s user
interface, and to use additional functionality available in Word.

This element launches the cmdmsword command, which checks the value of
the warn attribute. If the attribute’s value is true, the following warning
displays.

1 Edit in Word

Y'ou are about ta edit your dacurment in M5 YWard. Due ta the limitations of HTML, there may be a lozs of farmatt
when returning the docurment to the edikar.

Do you wigh to proceed?

1w |

If the user elects to proceed, Microsoft Word launches. Any content in
eWebEditPro is copied to a temporary Word document. The user then edits
within Word.

When done, the user either closes Word (using the small x in the top right
corner of the window) or returns to eWebEditPro and clicks the Word button

() again. The Word content is copied back into eWebEditPro.

When Word content is pasted into eWebEditPro, the Clean HTML Code
dialog box appears, asking the user if he wants to clean excessive HTML
code.

See Also: "Cleaning HTML” on page 332

Element Hierarchy

<config>
<features>
<msword>

Child Elements

cmd

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 348

Editing in Microsoft Word

Attributes
Name Attribute Type Default Description
warn Boolean True Determines whether a warning displays when
user launches Word and returns to
eWebEditPro from Word.
startupmode string htmlview Determines Word’s initial view format.

Choose from these options:
* normalview - a document formatted on
a simplified page

= htmlview - a document as it appears
in a Web browser

= wordview - a document as it appears
when you print it

* readingview - a document in full page
view

* outlineview - a document that shows
hidden characters as well as visible ones

After the document loads, the user can
change the view using the menu options.

Using the Long Parameter with cmdmsword

If you send the msword command via JavaScript, you can use the long parameter
to specify whether you want MS Word started or shut down.

® If you specify 1 in the long parameter, MS Word launches

® |f you specify 0, MS Word shuts down

Here is an example of it starting MS Word.

<input type="button' value="Run Word"
onClick="eWebEditPro. instances[“"MyContentl"].editor.ExecCommand("cmdmsword®, **,1)">

Here is an example of it shutting down MS Word.

<input type="button" value="Run Word"
onClick="eWebEditPro. instances[“"MyContentl"] .editor.ExecCommand("cmdmsword®, **,0)">

How Microsoft Word Content is Processed
There are three ways to handle Microsoft Word content.

® Conserve formatting from Microsoft Word wherever possible.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 349

Editing in Microsoft Word

® Convert Word styles to standard HTML where possible.

® Conform to style sheet by discarding some Word styles.

Each method is explained, with their pros and cons and how to configure them.

Conserve Word Formatting

Pros

Cons

Configure

This approach preserves Word formatting where possible. It is impossible to
retain all formatting because the HTML standards do not support all of Word’s
formatting features. Also, Word uses CSS styles that are not available to the
eWebEditPro when copying and pasting from the clipboard.

You will retain more or Word's formatting if you specify a style sheet file (.css) that
duplicates the styles used in Word. To make this task easier, eWebEditPro
provides the ektnormal.css file, which is based on MS Word 2000’s Normal.dot
style template.

® Preserves as much Word format as possible

® Word styles may cause problems when the user tries to change formatting in
eWebEditPro. For example, if an inline style attribute is used to underline
text, clicking eWebEditPro’s underline button has no effect.

® Contentis large due to inline style attributes

* Wil probably display differently in older browsers

In your configuration XML data (for example, config.xml), set the following
attributes.

<clean preferfonttag="false" reducetags="true" mswordfilter="false">

<remove>
<tagWoAttr>SPAN</tagWoAttr>
</remove>
</clean>
<standard autoclean="false" ...>

<style publishstyles="false" href="[eWebEditProPath]/ektnormal.css"
preservewordstyles=""true" preservewordclasses=""true">

</style>

Options

Ensure that mswordfi I'ter and autoclean are false. Both attributes may
remove Word formatting. Also, ensure both preserveword attributes are true;
otherwise, Word formatting is lost.

If you want to retain even more HTML tags from Word, set reducetags=
"false".

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 350

Editing in Microsoft Word

If you want to display the content without using a style sheet, like ektnormal.css,
set publishstyles=""true". Once you do this, it can be difficult to change the
format later.

Convert Styles

This approach tries to preserve Word formats, but converts the content to
standard HTML that is easier to edit in eWebEditPro. Formatting may be lost to
meet this goal. This approach is recommended when converting Word documents
to Web content.

Pros
® Suitable for editing in eWebEditPro
® Reduces content size
® More standards compliant
Cons
® Formatting may be lost
Configure

In your configuration XML data (for example, config.xml), set the following
attributes.

<clean preferfonttag="false" reducetags="true" mswordfilter= "true">
<remove>
<tagWoAttr>SPAN</tagWoAttr>
</remove>
</clean>
<standard autoclean=""true" ...>
<style publishstyles="false" href="[eWebEditProPath]/ektnormal.css"
preservewordstyles="false" preservewordclasses="true">
</style>

Ensure that mswordfi I ter is true. This attribute converts Word formatting.
Also, ensure that preservewordstyles is false. Otherwise, it may be difficult to
edit in eWebEditPro. In general, it is safe to set preservewordclasses to true
because the ektnormal.css style sheet retains most Word styles without
sacrificing ease of use.

Options

If you want to use FONT tags where applicable, set preferfonttag=""true".

if you want to always remove style attributes, even if the content does not come
from MS Word, add style to the <remove> element, as shown below.

WARNING! This also removes the background color.

<remove>
<attribute>style</attribute>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 351

Editing in Microsoft Word

<tagWoAttr>SPAN</tagWoAttr>
</remove>

Conform by Discarding

This approach controls formatting through external style sheets (.css files). Your
Web site’s styles supersede formatting applied by a user in Word. Simple
formatting like bold and italic are usually allowed, but Word-specific styles and
style classes are removed.

Pros

Conforms to preferred styles where possible
Cons

Loss of some formatting
Configure

In your configuration XML data (for example, config.xml), set the following

attributes.
<clean preferfonttag="false" reducetags="true" mswordfilter= "true">
<remove>
<tagWoAttr>SPAN</tagWoAttr>
</remove>
</clean>
<standard autoclean="true" ...>

<style publishstyles="false" href="mystylesheet.css" preservewordstyles="false"
preservewordclasses="false">

</style>
Ensure that mswordfi lter is true. This attribute that converts Word formatting.
Also, ensure that preservewordstyles and preservewordclasses are
false. Setting preservewordclasses to false removes all the
class="Mso..." attributes. Typically, you replace ektnormal.css with your own
style sheet.
Options

if you want to always remove FONT and U tags, add them to the <remove>
element, as shown below.

<remove>
<tagonly>FONT</tagonly>
<tagonly>U</tagonly>
<tagWoAttr>SPAN</tagWoAttr>
</remove>

Using Word to Edit XML Documents

Microsoft Word does not support the editing of XML documents. If a full XML
document is loaded, the Word button () is disabled. Therefore, you should

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 352

Editing in Microsoft Word

disable the msword element for users who create and edit XML using
eWebEditPro+XML.

If a Word document includes some custom/XML tags, the following dialog
appears, warning the user of the problem.
1 Edit in Word

WARMIMG: This content containg tags that Microzoft Wiard may naot recoghize.
Microsaft “word may corupt the content, introduce invalid tags, or mayp not dizplay it at all.

Do pow wankt to continue?

The user can proceed and edit using Word or decide not to edit the document
using Word.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 353

Encoding Special Characters

Factors that Affect the Display of Special Characters

The HTML specification defines special characters for a set of punctuation
symbols, accented letters, and a variety of non-Latin characters. As the
HTML specification has changed, so has browser support for special
characters.

For example, Microsoft defined several special characters that previously
displayed only in Internet Explorer on Windows. They are extended
characters that map to binary values 128 to 159. Depending on the browser
version and operating system, the characters may appear as expected, as a
guestion mark (?), or as a small rectangle. The W3C adopted most extended
characters in HTML 4, but mapped them to different binary values.

Using the wrong font can also prevent the proper display of a character. This
is a common problem when copying from Microsoft Word, where many
special characters are in the Symbol font. If the font is not available in the
browser or not permitted in the editor, special characters do not display
properly.

For example, the Euro symbol was designed for the European Economic
Community (EEC) in the late 1990s. Obviously, operating systems and
browsers created earlier could not display it.

Euro character (shown using an image) €

Euro in Verdana font (display depends on your €
browser)

Euro in Courier New font (display depends on your €
browser)

Entity Name €
Microsoft Windows Extended Character Reference €
HTML 4 Character Reference €

Characters with binary values 160 to 255 are also special characters because
they display differently depending on the browser’s language (or locale) and

the charset attribute in the meta tag on the Web page. Below is an example
meta tag.

<meta http-equiv=Content-Type content="text/html; charset=iso-8859-2">

The display of special characters can also be controlled from the browser. For
example

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 354

Encoding Special Characters

® in IE 5, from the menu bar, select View > Encoding > language of your
choice. (You may need to install the IE option for international language
support).

® in Netscape 4.7, select View > Character Set > language of your choice

In each case, the possible languages are grouped as West European (Latinl),
East European (Latin2), Cyrillic, Arabic, Greek, Hebrew, and more. Each
character set is defined by 1SO 8859, a standard for coded graphic character sets
established by the International Organization for Standardization.

The ISO 8859 special characters are listed below. When viewed in a browser,
these characters display differently if you change your browser’s encoding.

iCED¥|870%3«~-®

°#23 . 19% %Y,

In summary, the following factors affect the display of special characters.
® browser and browser version

® operating system

® language of the operating system (English, Polish, Arabic, etc.)

® font (Times, Arial, Helvetica, Symbol, etc.)

® charset attribute in the meta tag (windows-1252, iso-8859-1, etc.)

® encoding/character set setting of the browser (Western, Central European,
UTF-8, etc.)

Viewing and Saving Unicode Characters

When a user views Web content in View As HTML mode, Unicode characters
appear as their character reference (for example, ֪).

IMPORTANT! The view source window can only display characters that match the system
language of the operating system. That is, to display Japanese characters in
source, the operating system must be Japanese Windows or Windows whose
default system language is set to Japanese. Characters not supported by the
operating system are converted to "?".

However, they do not need to be saved in that format. The charencode attribute
in the clean element of the configuration data determines how Unicode
characters are saved.

See Also: "charencode Attribute” on page 356

To save Unicode characters in a format other than character reference, set
charencode to one of the following:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 355

Encoding Special Characters

® utf-8, if using UTF-8 charset encoding

® binary, if using some other encoding, such as big5, shift_jis, etc.

Displaying Asian Languages
Many Asian languages, such as Japanese, Korean, and Chinese, are

represented by two bytes instead of one. The binary values for these characters
are in the range 256 to 65535. These are mapped as Unicode characters.

eWebEditPro can optionally convert these characters to their character reference
or leave them as double-byte binary Unicode values (not UTF-8). For example, a
character whose binary value is 1234 converts to Ӓ.

Unicode Characters

Unicode characters (double byte characters typically used for Asian languages)
are normally converted to character references, for example, Ӓ. To output
Unicode characters as their double-byte binary value, set the charencode
attribute to binary. If your site uses UTF-8 encoding, you can set the charencode
attribute to UTF-8 instead of binary, but the two are essentially the same.

Configuring for Extended and Special Characters

eWebEditPro can be configured to represent extended and special characters in
several ways. They are

® binary - extended, special, and double-byte characters as binary (Unicode,
which can be converted to UTF-8)

® entityname - extended and special characters as their entity name; double-
byte characters as their character reference

@ charref - extended, special, and double-byte characters as their character
reference. This is the default value.

® special - extended characters as their entity name; special characters as
binary; double-byte characters as their character reference

@ Jatin - extended characters as HTML 4 character references; special
characters as binary; double-byte characters as their character reference

charencode Attribute

To configure eWebEditPro, set the charencode attribute of the clean tag in the
configuration data. For example,

<I-- values for charencode: utf-8, binary, entityname, charref, special, latin -->
<clean charencode="charref" _..>

NOTE To prevent selected characters from being converted to character references, use
the preservechars attribute of the clean element. For more information, see
“preservechars” on page 337.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 356

Encoding Special Characters

The values for charencode and their effect are described in the following table.

Value of Description Sample

charencode

utf-8 or The sample shows all the characters) . .
binary with binary values 128 to 255. Extended Characters: windows-1252 (WimLatin1)

Characters 128-159 are extended
characters. They are listed in two rows
that start with 80 (the hexidecimal
representation of 128) and 90.

Characters 160-255 are special
characters. They are listed in several
rows that start with AO (the hexidecimal
representation of 160) through FO.

The sample was captured using IE 5.0
on English language Windows (Latinl).

Double-byte characters are not shown,
but would be their binary value.

WARNING: These characters only
display properly if the operating system
supports them. Even if they display in
WYSIWYG mode, they may not display
in View As HTML mode. If stored in a
database, the database must support
double-byte Unicode characters. May
not be supported in Netscape Navigator
4.

20€0,F, Tt "% 53«E0Z0
90 0 T e——"MME e 0: T

apecial Characters: (Latinl shown)

AD jEEOEIE T DRy B
BO:o£23 - 1% 3
CoAAAAAABCEEEEIILL
DOPNOOOOOx@UUTUYDR
E AdmceeBeiill

F s oTeuuliuoyhy

s
o ERE ()

= =
o R

i -
S

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 357

E

ncoding Special Characters

Value of
charencode

Description

Sample

entityname

Extended characters are represented
using their entity name (for example,
€) where possible.

Special characters are represented
using their entity name (for example,
 or Agrave;).

Double-byte characters are not shown,
but would be their binary value.

Extended Characters:

g0: € &sboguo:
Ldacger; &Dagoger:
&lzacquo; &0Elig;
90: &£lsquo; &rsdguo;’
endash: fwmwdash;
Lrzaguor œ

Zpecial Characters:
AO: : ¡:
Lyven; &hrvhar:
£laquo; ¬ ­
BO: °r: ±:
Lmicro: ¶rs
gordm; &racuo;
gicuest:

CO: ghgravve;
ghwmnl;: Å:
LEacute: &LEcire:
£loire;: £TIuml:

&fnof:
Loire:
EH3E1;

£tilde:;
EH3BZ;

LOENT
Lsect;

Lsupz
grmiddot;
ffracid;

Lhacute;
EAElig;
&Ewml:

windows-1252 [(WinLatinl)

Ehdouo;
Lpermil;

&hellip:
LSocaron;
&ldoquo; &rdoguor £bull:
strade; š
ETuarnl;

(Latinl shown)
Epound:
swnl; ©
Lreq; &WacE;
L£supd:
soedil:
sfracli;

LCurren;
sordf:

Lacute;
£supil:
Lffracsd;

Lhoire: f£Atilde;
gCoedil; sEgrave:
EIgrave: &lacute:;

charref

Extended characters are represented
using their HTML 4 character reference
(for example, €).

Special characters are represented
using their character reference (for
example, or À).

Double-byte characters are not shown,
but would be their binary value.

Extended Characters:
B0: s#S364; LHSZ1S;
cHBz24: &£HB225;
£H#338; &£H381;

o0: g#8ile: LHESZL17T:
£#8211; &£#58212;
£H3I39; £HIBZ: £H3ITE;

Special Characters:

LO: =f1e0; e#161l; &f
e6; &H167: &H165:
£H172: £#173: &H174;
EO: &f176; ± &f
£H182;: £H183: &H184:
£H1588; £#189; &H#190;
CO: &H192; £H193: &#
£H195; &£#199: &H200;
EHZ04; &HEIOS; &£HZO06!
DO: &HZ05; &H#209;
£H214;: £#215; &H216;
EHZZ0; &HIZ1; &HZZZ:

&H710;

EHT32;

cHZ10;

windows-1252 (WinLatinl)
£fq02; LHSZZZ: £#B230;
£H32490; &£H352; £H#35249;
EHGZZ0; EHSZEZ21: &fiGZZa;
£H#8462; &£H#353; &£#5250;

[Latinl shown)

162; £ £#164; £H165;
gf169; £H170:; EH171:
EH17E;

176;: ³: &H180; £#181:
&H185; &H186: &£H187:
£H191;

194; L#195; L#196; L£H197:
&H201;: &£H20Z; g£HZ03;
eHz07;

eHZ11; EHZL1Z: &HZ13:

&H217: &H218; &£HZ219;

EHZZ3;

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

358

Encoding Special Characters

Value of Description Sample
charencode
special Extended characters are represented Extended Characters: windows-1252 (WinLatinl)
using their entity name (for example,
€) where possible. §0: € &sboguo; &£fnof; £hdouo; £hellip:
Special characters remain as binary, cdagger: &Dagger: &circ: ‰ &3caron:
except the non-breaking space, which is | £15aquos £0Elig; e#38l;
represented as . 90: &lscquo; &raguo; &ldguo; grdouo; ghoull;
thdash: &wdash: &tilde: ™ &scaron?
Double-byte characters are not shown, frsaquo; foelig; &H382; &£Tuml;
but would be their binary value.
Special Characters: [(Latinl shown)
BO: § ¢ £ 52 ¥ ! 5 T @ 3 4o - @
BO: * £ * 2 " pnq N i I
co: AAAiiiEcEEEREILIL T
p0: P H GG OGO =@ U T OTTFTE &
EO: 4 4Ad&adecgeééédeéiiii
FO: § A6 66886 s aundilsh i
latin Extended characters are represented Extended Characters: windows-1252 (WinLatinl)
using their HTML 4 character reference |szo: sgpszed; sfiszls; o#fa0z; offSzzz; efS230;
(for example, €). GfSz2z4: &HS225: £#710:; &fsSz40: £f352: ᒁ:
Special characters remain as binary, Œ &l;
except the non-breaking space, which is |7+ CHEZ16; &HBZ17: E#BZZ0: &H5ZZ1; &HEZE6:;
represented as :. &fB211; — ˜ &f5482; £#353:; &H#8250;
Sff339; £H38Z; eH576:
Double-byte characters are not shown,
but would be their binary value. Special Characters: (Latinl shown)
LO: g#160; | ¢ £ 2 ¥ | § " © * & o - @
BO: * £ 2= 3 " pnq PRI R a2
co: AALAiilEcEdReriloa
Do: P H GO OGO - @ UTOUTTE B
E0: a4 4AAddegéééeiiii
FO: 8 Ao & 886 -eguundidhi

Choosing a charencode Value

The best charencode value to use depends on the environment in which the
content is viewed and personal preference for entity names versus character
references. Here are some examples.

database), you must use entityname or charref.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

If the environment only supports 7-bit ASCII characters (for example, a

359

Encoding Special Characters

® Values of special or latin create smaller file sizes, because the special
characters require one byte instead of six or more bytes to represent each

character.

® Avalue of binary create the smallest file sizes for content that consists mostly
of Asian characters (for example, Japanese, Korean, Chinese), because the
characters require just two bytes instead of seven or more.

® Some sites convert Unicode characters to a byte stream format of UTF-8. If
your site consistently uses UTF-8, use a value of utf-8.

The following table recommends charencode values for certain conditions.

Condition

Recommended
charencode Value

Comments

Database supports
only 7 bit characters

entityname or charref

Extended and special characters will be
corrupted if wrong charencode value is
selected. Your choice depends on your
preference for entity names or character
references.

Database supports
only 8 bit characters

any except binary; use utf-8
only if your site uses UTF-8

consistently

Some special and all double-byte characters
are corrupted if you choose binary.

Double-byte encoding,
typically for an Asian
language, and
document size is

binary or utf-8

Database must support Unicode (double-byte)
characters. Note: Unicode is not the same as
UTF-8.

important

Entity names are entityname Extended and special characters are their
preferred entity name.

Entity names are special Special characters are binary for different

preferred, but in a non-
Western European
language

document encodings, but extended characters
are their entity name.

ISO-8859 (Latin) or
windows charset
encoding on
document, but not
Latinl (that is, not
windows-1252 or iso-
8859-1)

latin or special

Your choice depends on your preference for
entity names or character references for
extended characters.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 360

Encoding Special Characters

Condition

Recommended
charencode Value

Comments

Netscape Navigator 4
used for browsing

charref

Most extended and special characters appear.
Double-byte characters do not appear if the
browser or operating system does not support
the language. If another charencode value is
selected, some extended and special
characters may appear as a question mark (?)
or their entity name.

UTF-8 charset
encoding on document

entityname or charref; use
utf-8 only if your site uses
UTF-8 consistently

Special and double-byte characters do not
display correctly as binary. Your choice
depends on your preference for entity names
or character references.

XML without XHTML

charref; use utf-8 only if your

XML supports only a very limited set of entity

DTD/Schema site uses UTF-8 consistently names unless the XHTML (or other) DTD is
provided.
Not sure charref charref works with both UTF-8 encoding and

XML parsers. It also gives the best results in
Netscape.

If special characters always appear as West
European letters instead of the proper
language, try latin.

Character Encoding Checklist

This section provides a checklist for setting the correct character encoding for

content authored in eWebEditPro.
1.

Ensure the Web page with the eWebEditPro editor has the proper charset

specified in a meta tag.

<meta http-equiv=""Content-Type" content="text/html; charset=big5">

2.

Ensure the eWebEditPro charset parameter matches the charset used in the
meta tag. With eWebEditPro 2.5 or higher and IE, this is done for you.
Otherwise, if using a non-Western European characters, it is a good idea to
explicitly set the charset parameter. You can do this in the
ewebeditprodefaults.js file or on the page with the editor in JavaScript prior to
creating the editor.

eWebEditPro.parameters.charset = "big5";

3.

Ensure the charencode attribute in the eWebEditPro configuration data is set
properly. For information on choosing a value, see "Configuring for Extended
and Special Characters” on page 356.

As a general rule, use utf-8 if your charset is UTF-8, and use charref or binary
if using non-Western European languages. 'binary' conforms to the charset of

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 361

Encoding Special Characters

the page with the editor. ‘charref' is 7-bit ASCII and works with any charset
and database, but may require special consideration when searching (see

below).
<I-- values for charencode: utf-8, binary, entityname, charref, special, latin -->
<clean charencode="binary" ...>

If you are storing content in a database, ensure the database supports the
encoding used. Some databases do not support Unicode (double byte
characters). If it does not, you may wish to use UTF-8 or ASCII (with Unicode
characters expressed as character references). See also How to store unicode
characters so they are searchable.

Ensure the Web page that displays the content has the proper charset specified in
a meta tag.
<meta http-equiv=""Content-Type" content="text/html; charset=big5">

The browser should automatically select the proper encoding, but if it does not,
correct the encoding. On IE 5, it is set from the View Encoding menu.

UTF-8

UTF-8 is not Unicode. Instead, it is a byte-stream representation of Unicode
characters, which are always two bytes long. 7-bit ASCII characters are
compatible with UTF-8 (that is, the same in UTF-8). UTF-8 characters may be one
to three bytes long.

How to Store Unicode Characters So They Are Searchable

This section describes how to store unicode characters, such as Arabic or
Japanese characters, so they can be searched when doing site searches.

NOTE Your database must support Unicode (double-byte) characters. Unicode is not the
same as UTF-8.

1. Make sure that your site specifies the proper character set for the characters
you are trying to display.

2. Inthe config.xml file, set the charencode attribute of the clean element to
"BINARY".

3. Inthe ewebeditprodefaults.js file, set the this.charset variable to the
character set you want to use. Alternatively, you can use
eWebEditPro.parameters.charset to specify it on the page.

For example, if you want to store Japanese characters, the clean element in
the config.xml file would look like

<clean charencode="binary"....>

and the this.charset in the ewebeditprodefaults.js file will look like
this._charset="shift-jis";

or you can insert eWebEditPro.parameters.charset="shift-jis"
on the page that calls the editor.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 362

Encoding Special Characters

References

Character entity references in HTML 4 (http://www.w3.org/TR/REC-html40/
sgml/entities._html)

The ISO 8859 Alphabet Soup (http://czyborra.com/charsets/
is08859_html)

Dan's Web Tips: Characters and Fonts (http://www.dantobias.com/webtips/
char.html)

W3C Internationalization/localization (http://www.w3.org/International/
Ooverview.html)

Character sets supported by popular Web applications (http://www_w3.org/
International/0O-charset-list_html)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 363

http://www.w3.org/TR/REC-html40/sgml/entities.html
http://www.w3.org/TR/REC-html40/sgml/entities.html
http://czyborra.com/charsets/iso8859.html
http://czyborra.com/charsets/iso8859.html
http://www.dantobias.com/webtips/char.html
http://www.dantobias.com/webtips/char.html
http://www.w3.org/International/Overview.html
http://www.w3.org/International/Overview.html
http://www.w3.org/International/O-charset-list.html
http://www.w3.org/International/O-charset-list.html

Implementing a Web Site that Uses
UTF-8 Encoding

UTF-8 is a byte stream encoding scheme that converts each double-byte
Unicode character to one, two or three bytes.

For example, the letter a has an ASCII value of 97 (61 hex). It maps
unchanged in UTF-8 to a single byte with a value of 97.

The single quote character (*) has an ASCII value of 231 (E7 hex). It converts
to two UTF-8 bytes: 195 167 (C3 A7 hex).

The Japanese single quote character () has a Unicode value of 27231 (6A5F
hex). It converts to three UTF-8 bytes: 230 169 159 (E6 A9 9F hex).

See Also:
® “Encoding Special Characters” on page 354

® “Implementing UTF-8" on page 364

Implementing UTF-8
To implement UTF-8, follow these points.

* All Web pages that include the editor or that display the content must set

the charset to UTF-8.
<head>
meta http-equiv=Content-Type content="text/html; charset=utf-8">

</head>
® |[f you are using a database, ensure that it can accept UTF-8 or Unicode
characters.

® Set the configuration data to produce characters for UTF-8.
<clean charencode="utf-8" ...>

(For more information, see "charencode Attribute” on page 356.)

® Load UTF-8 encoded content into the hidden field for the editor. How you
load this content varies according to your server platform and
environment.
<input type=hidden name="MyContentl" value="Content that is UTF-8 and HTML encoded">

NOTE You may not be able to use standard HTML encoding functions, such as
HTMLEncode () in ASP.

WARNING! Content stored in JavaScript string variables and in the eWebEditPro ActiveX
control is stored as Unicode (double-byte) characters. When a browser reads

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 364

Implementing a Web Site that Uses UTF-8 Encoding

the value of the hidden field, the browser converts the UTF-8 byte stream to a
Unicode string for JavaScript. Similarly, when a form is posted to the server, the
browser converts content stored in the hidden field to UTF-8.

Tips
® |f the UTF-8 byte stream is treated as a Unicode string, the special

characters are corrupted and appear as two or three characters.

® |f a Unicode string is interpreted as UTF-8, special characters are corrupted,
and the number of characters is reduced, thereby eliminating some
characters whether or not they are special.

® ASCII characters (A-Z, a-z, 0-9, etc.) always appear correctly because they
have the same value in Unicode and UTF-8.

Setting the charset Parameter

If you are retrieving the entire document from the editor, set the charset parameter
to utf-8. If you are retrieving only the body contents, you may still set the charset
parameter.

To set the charset parameter to utf-8, update the ewebeditprodefaults.js file so
that charset is set to utf-8. Or, you can use JavaScript to modify
eWebEditPro.parameters on the page using this code.

eWebEditPro.parameters.editor.charset = "utf-8";

Browser Support for UTF-8

In order for the browser to support UTF-8, the following conditions must exist.
® The browser displaying the editor must support UTF-8.
— Microsoft provides language add-ons for Internet Explorer.

— Because Netscape 4.7x may not display Asian characters on English
Windows (they may appear as question marks '?"), you need a
language-specific version of the operating system and/or browser.

— Netscape 6 supports multiple languages.

® Ensure that the browser encoding uses UTF-8. Set the browser to unicode
using the sequence of menu options indicated below.

— Internet Explorer: View > Encoding > Auto-Select or Unicode (UTF-8)
— Netscape 4.7: View > Character Set > Unicode (UTF-8)

— Netscape 6: View > Character Coding > Auto-Detect > Auto-Detect
(All) or Unicode (UTF-8)

For More Information about UTF-8
® UTF-8 (technical specification) - http://www.ietf.org/rfc/rfc2279.txt
® The ISO 8859 Alphabet Soup - http://czyborra.com/charsets/iso8859.html

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 365

http://www.ietf.org/rfc/rfc2279.txt
http://czyborra.com/charsets/iso8859.html

Implementing a Web Site that Uses UTF-8 Encoding

® Dan's Web Tips: Characters and Fonts - http://www.dantobias.com/webtips/
char.html

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 366

http://www.dantobias.com/webtips/char.html
http://www.dantobias.com/webtips/char.html

Style Sheets

A style sheet is a file (extension .css) that contains specifications for the
visual elements of a Web page, such as heading sizes, fonts and margins.
You use a style sheet to override default HTML values for these elements on
a group of Web documents or an entire Web site.

Style sheets let you establish a set of style specifications and apply them to
all pages. Assume, for example, that the default display for the <H3> tag is
Times New Roman.

Heading 3 default

If you apply a style sheet, it might modify the <H3> tag, like this.
h3 {FONT-FAMILY: Arial; FONT-SIZE: 14pt; MARGIN: 12pt Oin 3pt}

The text follows the style sheet specifications, and looks like this.

Heading 3 default

As a result, a Web site containing thousands of pages and updated by scores
of editors can have a consistent look.

A good Web site that explains style sheets is http://www.w3schools.com/
css/defaul t.asp.

This section explains the following topics relating to using style sheets with
eWebEditPro.

® Using Style Sheets to Standardize Formatting

® The Default Style Sheet

® Applying Style Sheets

® The BodyStyle Parameter

® Preserving Tags When Office Content is Pasted
® Saving Style Sheet Tags When Content is Saved
® |nserting span or div Tags

® Applying Two Style Classes to the Same Content

® |mplementing Style Class Selectors

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 367

http://www.w3schools.com/css/default.asp
http://www.w3schools.com/css/default.asp

Style Sheets

Using Style Sheets to Standardize Formatting

NoOTE

You can combine a style sheet with the toolbar configuration procedures (see
“Defining the Toolbar” on page 166) to control the formatting of the content that
users produce.

For example, you could remove from the toolbar the menu options that let users
select font size, color and style. Then, in a style sheet, you would specify a font
size, color and style. If you make these modifications, users can enter text but not
change its size, color or style -- the style sheet has standardized those
specifications.

The bodyStyle parameter also lets you apply style sheet attributes to the content.
See “Property: bodyStyle” on page 121.

The Default Style Sheet

<features>

eWebEditPro provides a default style sheet, ektnormal.css, that emulates the
Word 2000 Normal.dot template. If you assign this style sheet in the configuration
data, the Word 2000 default styles are applied to the content.

To do this, set the href attribute in the features > standard > style
section of the configuration data to look like this.

<standard autoclean="true" publish="xhtml">
<style publishstyles="true" href="[eWebEditProPath]/ektnormal .css"/>

Changing the Default Style Sheet

To change the default style sheet, place the new style sheet into the folder that
contains eWebEditPro and replace the named style sheet in the configuration
data (above in red).

For example, if your custom style sheet is named mystyles.css, the configuration
data would look like this:

<style publishstyles="true" href="[eWebEditProPath]/mystyles.css"/>

Applying Style Sheets

NoOTE

You can create your own style sheet and apply it to the eWebEditPro editor.
There are three levels at which you can apply a style sheet.

® the configuration data - affects all editors that refer to it (see “The
Configuration Data” on page 248).

If your eWebEditPro pages refer to several config.xml files (for example, you
have different files for different user groups), and you want all pages to use the
same style sheet, assign the same style sheet in all of the configuration data.

® apage - affects only the editors on one page

® asingle occurrence of the editor - affects only one instance of the editor

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 368

Style Sheets

WARNING! Depending on your settings, you probably also need to specify the style sheet
when the content is published. If you use templates in your Web application (for
example, a content management system), a reference to the style sheet is
required. This is typically done using the link tag. For example: <link
rel=""'stylesheet" type=""text/css" href="/ewebeditpro5/
Xyz.CSss'"™>.

Note that if a style sheet is specified in more than one location, the most local one
takes precedence. For example, if a sheet is specified in all three locations listed
above, the style sheet applied to the single occurrence of the editor would be
used.

If the most local style sheet does not includes a specification for a certain tag, the
browser will display its default for that tag -- it does not look in higher level style
sheets for that tag’s specifications.

Specifying a Style Sheet in the Configuration Data

You assign a style sheet using the style tag of the configuration data. To
implement a style sheet in the configuration data, follow these steps.

NOTE You can also apply, list and disable style sheets using ActiveX methods. For more
information, see “For details on the properties, methods and events, see
"eWebEditPro ActiveX Control Object” on page 13.” on page 247.

Create your style sheet file (for example, xyz.css).
Open the config.xml file in the directory where you installed eWebEditPro.

Move to the style tag, located within the features > standard section
of the configuration data.

<features>
<standard autoclean="true" publish="xhtml">
<style publishstyles="true" href="[eWebEditProPath]/ektnormal.css"/>

Note that [ewebEditProPath] refers to the eWebEditProPath variable in the
ewebeditpro.js file. If your style sheet resides in a different directory, replace
[eWebEditProPath] with the directory pathway.

4. Change the href attribute in the style command so that it refers to your style
sheet.
<style publishstyles="false" href="/yourpath/xyz.css"/>

5. Setpublishstyles to false.
style publishstyles="false" href="/yourpath/xyz.css"/>

Adding a Style Sheet to a Single Page
1. Open the page to which you want to add a style sheet.

2. Set the styleSheet parameter by adding JavaScript to the page before the
editor is created.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 369

Style Sheets

<script language="JavaScriptl.2">
<i--

eWebEditPro.parameters.styleSheet = "/yourpath/xyz.css";

// -->
</script>
<l-- code to place the editor on the page goes here -->

Dynamically Changing a Style Sheet for a Single Instance of the Editor
1. Open the page to which you want to add a style sheet.
2. Add the following JavaScript function below the page’s head tag.

<script language="JavaScript'>

function setStyleSheet(strEditorName, strCSS)
{

}

</script>

eWebEditPro[strEditorName].setProperty(''StyleSheet', strCSS);

Replace strEditorName with the name of the editor, and strCSS with the
name of the style sheet.

3. On the page where you create eWebEditPro, set the onready event to call
the setStyleSheet function.

For example,

<script language="JavaScript'>
eWebEditPro.onready = "setStyleSheet(eWebEditPro.event.srcName, "/yourpath/xyz.css")";
</script>

Tip: You can set the StyleSheet property to change the style sheet after the editor
loads. For example, you might want to change the style sheet when the user picks
from a list of styles that you provide.

The BodyStyle Parameter

The BodyStyle parameter also affects all editors, or an instance of the editor. If the
body style parameter is set, it takes precedence over a style sheet. The
parameter applies the style to the sty le attribute of the body tag.

For more information, see “Property: bodyStyle” on page 121.

Preserving Tags When Office Content is Pasted

Within the configuration data, the style tag has preservewordstyles and
preservewordclasses attributes that determine whether class and style
attributes are preserved when Microsoft Office 2000 or later content is pasted into
the editor.

If you set these attributes to true, class and style attributes are preserved when
pasting Word 2000 content. If set to false, the class and style attributes are
removed.

Below is an example of how to implement this feature within the configuration
data.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 370

Style Sheets

<features>

</external>

<standard autoclean="true" publish="xhtml">

<style preservewordstyles="true" preservewordclasses="true"/>

Saving Style Sheet Tags When Content is Saved

Within the configuration data, the style tag has a publishstyles attribute that
determines whether the style sheet specifications for each tag are inserted into
the file when the content is saved.
<features>

</external>

<standard autoclean="true" publish="xhtml">
<style publishstyles="true"/>

Below is an example of the html text of a saved line when publishstyles is set to
true.

<p align="center" style="BOTTOM: Opx; FILTER:; FONT-FAMILY: “"Times New Roman-®;

FONT-SIZE: 12pt; MARGIN: Oin Oin Opt'> VARs benefits and features</p>
Here is the same line when publishstyles is set to false.
<p> VARs benefits and features </p>

Setting Publishstyles to True

Set publishstyles to true to make sure that the formatting specifications
remain with the content after it is saved.

Setting Publishstyles to False

Set publishstyles to false to maintain control of the styles for an entire Web
site. In this case, you would not want to insert style sheet specifications for each
tag. Instead, your style specifications would be taken from the style sheet
specified in the display page’s head tags or, if you are using a content
management system, from the template file.

Another advantage of setting publ ishstyles to false is that it greatly reduces
the size of the html page (as you can see from the example above).

Inserting span or div Tags

The wrapstylewithdiv attribute determines what to do when a user applies a
generic style class to text surrounded by blocking tags. Set the attribute to true to
wrap such text with <div> tags. To wrap this text with tags, set the
attribute to false.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 371

Style Sheets

For example, assume you have this content.

RC International is dedicated to the RC racing
enthusiasts! We eat, work, play, and live RC racing.

In three short years RC International has become one
of the leading manufacturers of RC racing and flying
vehicles. Our dedication to the sport, and the
enthusiasts who play it, has endeared our products to
the RC community.

Also, assume that you want to apply the following generic style class to content
that crosses paragraphs:

.uppercase

{

text-transform: uppercase;

}

If you set the attribute to "true and apply uppercase to the following text (which
crosses paragraphs) "We eat, work, play, and live RC racing.

In three short years RC International has become one of the
leading manufacturers of RC racing and flying vehicles.", the
HTML source looks like this:

<p>RC International is dedicated to the RC racing enthusiasts!</p>

<div class="uppercase'>

<p>We eat, work, play, and live RC racing. </p>

<p>In three short years RC International has become one of the leading manufacturers of RC
racing and flying vehicles.</p>

</div>

<p>0ur dedication to the sport, and the enthusiasts who play it, has endeared our products to
the RC community.</p>

Because <div> tags add <p> tags, in WYSIWYG mode, the text looks like this:

RC International is dedicated to the RC racing
enthusiasts!

WE EAT, WORK, PLAY, AND LIVE RC RACING.

IN THREE SHORT YEARS RC INTERNATIONAL HAS BECOME ONE
OF THE LEADING MANUFACTURERS OF RC RACING AND FLYING
VEHICLES.

Our dedication to the sport, and the enthusiasts who
play it, has endeared our products to the RC
community.

As you can see, the new <p> tags change the paragraph formatting. To avoid this
problem, set the wrapstylewithdiv attribute to "false". If you do, the editor
wraps the selected text with tags within the blocking tags. tags do
not affect the paragraph formatting.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 372

Style Sheets

Here is the HTML source when the attribute is set to false.

<p>RC International is dedicated to the RC racing enthusiasts!We eat,
work, play, and live RC racing.</p>

<p>In three short years RC International has become one of the leading
manufacturers of RC racing and flying vehicles.

Our dedication to the sport, and the enthusiasts who play it, has endeared our products to the
RC community.</p>

In WYSIWYG mode, the text looks like this:

RC International is dedicated to the RC racing
enthusiasts! WE EAT, WORK, PLAY, AND LIVE RC RACING.

IN THREE SHORT YEARS RC INTERNATIONAL HAS BECOME ONE
OF THE LEADING MANUFACTURERS OF RC RACING AND FLYING
VEHICLES. Our dedication to the sport, and the
enthusiasts who play it, has endeared our products to
the RC community.

Applying Two Style Classes to the Same Content

When a user applies a new style class to content to which a style class is already
applied, it is not obvious what the editor should do:

@ Should it replace the original style class with the new?

® Should it add the new style class around the original?

The equivClass attribute of the configuration data lets you control the editor's
behavior when a user applies a style class to content to which another style class
is already applied.

Location of equivClass Attribute

The equivClass attribute is located in the features > style tag of the configuration
data.

<style publishstyles="false" href="[eWebEditProPath]/ektnormal.css" equivClass="strict"
wrapstylewithdiv="false" preservewordstyles="true">

How the Editor Determines if Two Classes Are Equivalent

When a user applies a new style class to content to which a style class is already
applied, the editor

1. compares the properties of the original and new style classes, and

2. refers to the equivClass attribute to determine which style properties
should apply to the content

After comparing the original and new style classes, the editor determines whether
the two style classes are "equivalent".

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 373

Style Sheets

NOTE Property values are ignored - only property names are considered.

You control how the editor defines "equivalent" through the equivClass
attribute. This attribute has three values.

equivClass The two classes are equivalent

attribute

value

strict if they have exactly the same properties

loose if they share at least one property.
See Also: "Forcing Two Classes to be Equivalent” on
page 375

all regardless of similarity among properties

The result of this comparison is that the two style classes (original and new) are
determined equivalent or not equivalent.

New Class is Equivalent to Original Class

If the style classes are equivalent, the editor replaces the original class with new
class. For example

before
 Hello World
after

 Hello World

New Class is not Equivalent to Original Class

If two style classes are not equivalent, the editor adds the new style class around
original style class. For example

before
 Hello World
after

 Hello World

As a result,

® f a property occurs in both classes, the original class property is applied
because it is closer to the content

® if a property occurs in only one class, it is applied to the content

For example, here are two style classes:

.original

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 374

Style Sheets

¢ font-size: small;
color : red;
3
-new
{
font-size: large;
background-color : Gray;
3

Because the font-size attribute occurs in both styles and the .original style
is closer to the content, the .original size (small) is used. On the other hand,
color only occurs in the .original style class, and background-color only
occurs in the _new style class, so both are applied to the content.

Forcing Two Classes to be Equivalent

You can force two classes to be equivalent even if they have no common
properties. To do this, add the Ektron-specific style class property, equivClass,
to each style class that you want to be equivalent. For example,

.red

{
equivClass: Groupl;
color : red;

3
_backcolor
{
equivClass: Groupl;
background-color : Gray;
3

In this example, the two style classes, .red and .backcolor, are considered
equivalent because they have the same value for the equivClass property.

Tips for Using this Feature

If you want to Set the
equivClass
attribute to

Have the new style class always replace the original all

Have the new style class replace the original if at least loose
one of its properties matches at least one of the
original style class' properties

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 375

Style Sheets

If you want to Set the
equivClass
attribute to

Have the new style class replace the original if all of strict
its properties match the original style class' properties.
Otherwise, the new style class is applied around the
original.

Implementing Style Class Selectors

You can add to the toolbar a dropdown list (cmdselstyle) that lets users choose
a style class and apply it to selected text.

See Also: "Adding a Dropdown List” on page 174

(s BERMA o ot
__EBEId_'r'TEHt |~ | Momal

Cagption
Default Shle
Momnal

Flair Text

Thus is the body text.
This iz the body text.

The styles appear in the order in which they are entered into the style sheet
assigned to the editor.

Example of Using Style Class Selectors

As an example of using style class selectors, assume that your Web site features
text that is sample programming code. The Webmaster would open the
organization’s style sheet, create a style class called “Sample Code” and assign
appropriate formatting specifications to it (such as font-size:9._0pt; font-
family:"Courier New").

Then, when a user types sample programming code into the editor, he could
select the code, click the dropdown list, and select Sample Code from the list
(see illustration).

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 376

Style Sheets

Y MG
['+ Mamal

[Apphy Stule]

war X = 1;

The HTML code for this line would look like this:

<p class="code">var 1 = x;</p>

If a user wants to later remove a style class, he would select the text and press

the Remove Style button (@).

Types of Style Classes

There are two types of style classes.

Type Example Can be applied to
tag specific p-box { border: solid Only HTML tags specified in the
2px red } definition. The example style can only be

applied to text surrounded by <p> tags.
Affects entire paragraph.

generic -highlight { Selected text using or <DIV>
background-color: tags, regardless of tags surrounding the
yellow; } text.

Affects selected text only.

See Also: "Inserting span or div Tags” on
page 371

The following sample code illustrates both kinds of style classes.
<p class="box">IMPORTANT: read this highlighted word</p>

Determining Which Style Classes Appear in the Dropdown List
Styles appear on the list only if they satisfy these criteria:

® the style’s visible attribute is not set to false (visible is not a standard
attribute, and is only present if someone adds it to the style sheet or you use
eWebEditPro’s default style sheet, ektnormal.css)

® the style does not have a tag specifier or the tag specifier matches the
current tag. For example, if selected text is surrounded by <p> tags, and the
style class has a tag specifier of a, the style does not appear on the list. (For
more information, see “Types of Style Classes” on page 377.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 377

Style Sheets

® the style must have a class specifier. For example, if the selected text is
surrounded by <p> tags, p-normal {} and .highlight {} appearon
the list, but p {3} would not appear because it has no class specifier.

Determining the Names in the Dropdown List

By default, a style class’ name without the tag prefix appears in the dropdown list.
For example, the style class p-highlight appears as highlight.

If you want to change the name, use the caption attribute within the style class
definition. For example, to have the p.highlight class appear as yellow
background in the dropdown list, enter the following into the style sheet
definition:

p-highlight

{

caption : yellow background;
border : thin solid Green;

}

Translating Style Class Names

You can translate the dropdown list so that non-English speaking users see it in
their native language. To accomplish this, assign a localeRef attribute and code to
a style class. For example

.code {
localeRef:cssCode;

Then, translate the code to a foreign term in the appropriate locale.xml file. When
the editor displays the list, it displays the style names from the localization file.
(For more information, see “Translating Button Captions and Tool Tips” on

page 180.)

For example, assume that your users speak French, so you would modify the
locale040ch.xml localization file. Also, assume that the style “Sample Code”
translates into “Code d'échantillon” in French.

Here is an example of a standard style sheet specification. (The red is added for
emphasis.)

.code {

caption:Sample Code;
margin:0in;
font-size:10.0pt;
font-family:"Courier New'";}

Here is a style sheet specification with a reference to a localeref.

.code {

localeRef:cssCode;
margin:0in;
font-size:10.0pt;
font-family:"Courier New';}

Here is how to update the locale040cb.xml localization file so that it displays
“Code d'échantillon” on the dropdown list.

<cssCode>Code d*échantillon</cssCode>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 378

Style Sheets

Suppressing Styles from the Dropdown List

If you want to suppress styles from the dropdown list, add visible:false to
the style class’s definition in the style sheet. For example

.code {

visible:false;

margin:0in;
font-size:10.0pt;
font-family:"Courier New'";}

Style Classes and Matching Attributes

Some style classes have attributes that match attributes of other style classes.
Here is an example (both style classes have a font style attribute.)

-normal
{font-style: normal;}
.italic
{font-style: italic; }

This section describes how eWebEditPro handles matching attributes when a
style class is applied to Web content, and then another style class is applied to
the same content.

To understand how eWebEditPro reacts when another style class is applied, the
following table describes the three attribute match possibilities.

Two style classes have Example

the same attributes .normal
{font-style: normal;}
.italic

{font-style: italic; }

some same attributes and some different .normal

attributes {font-style: normal;}
-italic_overline

{font-style: italic;
text-decoration : overline; }

different attributes -normal
{font-style: normal;}

.overline
{text-decoration: overline;}

How eWebEditPro handles each possibility is described below.

Style Classes Have Same Attributes

If a user applies one style class and then applies another with the same attributes,
the second style class replaces the first.

Style Classes in this Example

-normal
{font-style: normal;}

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 379

Style Sheets

.italic
{font-style: italic; }

Before

HTML WYSIWYG

<P>This is initial content.</P> This is initial content.

After

HTML WYSIWYG

<P>This is initial content.</P> This is initial content.

(-italic style class
replaces .normal)

Style Classes Have Some Similar and Some Different Attributes

If a user applies one style class and then another with some of the same and
some different attributes, the second class’ same attributes override the first
class’ matching attributes.

Style Classes in this Example

-normal

{font-style: normal;}
.italic_overline
{font-style: italic;
text-decoration: overline; }

Before

HTML WYSIWYG

<P>This is initial content.</P> | This is initial content.

After

HTML WYSIWYG

<P>This is <SPAN This is initial content.

class=italic_overline>initial content.</P>
(Because the styles are not

exact match, both SPAN tags
remain in HTML. Text is italic
because second SPAN tag
changes font style.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 380

Style Sheets

Style Classes Have Different Attributes

If a user applies one style class and then another with different attributes, the first
class’ attribute remains, because the second class does not have that attribute.
Style Classes in this Example

-normal

{font-style: normal;}
.overline

{text-decoration: overline;}

Before

HTML WYSIWYG

<P>This is initial content.</P> | This is initial content.

After

HTML WYSIWYG

<P>This is <SPAN This is initial content.

class=overline>initial content.</P> .
(Text is normal because second

SPAN tag does not have font-
style attribute.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 381

Managing Hyperlink Dialogs

eWebEditPro’s standard toolbar features three buttons that let users manage
hyperlinks within their content.

® The Edit Hyperlink (cmdhyper 1 ink) toolbar button (%) lets users add
and edit information about a hyperlink

® The Remove Hyperlink (cmdunl ink) toolbar button (&) lets users
remove a hyperlink

® The New Hyperlink (jshyper1ink) toolbar button (5&) lets users add a
hyperlink to their Web content

NOTE By default, this button does not appear on the toolbar. If you would like to use
it, you must add it.

Customizing Dropdown Lists in the Hyperlink Dialog Box

This section explains how to customize the Hyperlink dialog box (illustrated
below).

Hyperlink |

— Hyperlink [nformation

Tope [E—

Lirk: Ihttp:.-".-"

]9

Cancel

Bookmark: I

Text: I

T arget Frame: I j

Quick Link: | [select link) I

Specifically, the section explains how to customize the

® values that appear in dropdown lists (see “Customizing the Lists of the
Hyperlink Dialog Box” on page 383)

® default values for most fields (see “Specifying Default Values for the
Insert Hyperlink Dialog” on page 389)

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 382

Managing Hyperlink Dialogs

Customizing the Lists of the Hyperlink Dialog Box

You edit the Hyperlink dialog box’s lists within the configuration data, under
command name="‘cmdhyperlink'. By default, these lists are not part of the
configuration data. As a result, you must first add each list that you want to
customize to the configuration data.

After you add a list to the configuration data, customize the list by
® adding or deleting list items (for example, deleting the mai 1'to protocol)
® changing attribute values (for example, to make the list of protocol types

disappear from the Hyperlink dialog box, change type’s visible attribute to
“false®)

The Hyperlink dialog box’s fields whose values you can determine are
® Quick Link (see “Quick Link List” on page 383)
® Type (see “Type List” on page 385)

® Target Frame (see “Target Frame List” on page 387

Quick Link List

Populates the “Quick Link” list, the list of URLs or other Web destinations to which
users will typically want to create jumps.

lllustration

Ektran
Ektron Support

Example

<command name="‘cmdhyperlink" >
<image key="hyperlink"/>
<caption localeEef=""cmdHyp"/>
<tooltiptext localeRef="cmdHyp"/>
<selections name="quicklink" visible="true" bookmarks="true" listtop="false">
<listchoice href="http://www.ektron.com" target="_blank">Ektron Home Page</listchoice>
</selections>
</command>

Directions for Updating

1. Open config.xml.
2. Find the section of the file that begins with cmdhyperlink.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 383

Managing Hyperlink Dialogs

3. If the group of listchoice elements shown in the example above does not
appear under the cmdhyper 1 ink command, copy and paste the sample
selections list (above) into config.xml under the cmdhyperlink command.

4. To add a quick link, copy and paste the line <listchoice href="http:/
/www.ektron.com”™ target="_blank">Ektron Home Page</
listchoice> within the selections tags. Then, replace the copied
values (in this example, "http://www.ektron.com'™ and Ektron Home
Page) with new values.

To remove a quick link, delete the entire line on which it appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 384

Managing Hyperlink Dialogs

Selection Elements

Element Value(s) Description
Attribute
name quicklink The name of this dropdown list.
visible true (default) The Quick Links list is visible.
false The Quick Links list is not visible.
bookmarks true (default) Bookmarks on this page appear in the Quick Links list.
false Bookmarks on this page do not appear in the Quick Links list.
listtop true (default) The "Top" bookmark appears in the Quick Links list.
false The "Top" bookmark does not appear in the Quick Links list.
listchoice/ The URL of a destination to which the user clicking this link is
href brought.
listchoice/ Any valid Target window (frame name).
target frame name If you specify a target frame, and the user is allowed to select a
or one of the target frame (at the Target Frame field), the user’s choice will
following override this value.
special
names:
_blank,
_self,
_parent,
_top
listchoice/ reflD A code to translate this element within the localization files (typically
localeRef not used).
listchoice/ Text that describes the destination in the Quick Links list.
<display
text>
Type List

Determines which protocols a user can assign to a link.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 385

Managing Hyperlink Dialogs

lllustration
T
ftpr -
Link: opher:]
Bookmark: hitps:
mailko:
: NEws:
Tent telhet: I |
WAL -
Example

<command name="cmdhyperlink" >
<image key="hyperlink'/>
<caption localeRef=""cmdHyp"/>
<tooltiptext localeRef="cmdHyp"/>
<selections name="type" enabled="false"™ visible="true">
<listchoice data="0">file:</listchoice>
<listchoice data="0">ftp:</listchoice>
<listchoice data="0">gopher:</listchoice>
<listchoice data="0" default="true'>http:</listchoice>
<listchoice data="0">https:</listchoice>
<listchoice data="1">JavaScript:</listchoice>
1
1
0
0

<listchoice data="1">mailto:</listchoice>
<listchoice data="1">news:</listchoice>

>telnet:</listchoice>
>wais:</listchoice>

<listchoice data=
<listchoice data="
</selections>
</command>

Directions for Updating

Open Config.xml.
Find the section of the file that begins with cmdhyperlink.

If the group of listchoice elements shown above does not appear under the
cmdhyperlink command, copy and paste the sample selections list
(above) into config.xml under the cmdhyperlink command.

4. To add a protocol, copy and paste the line <listchoice data="0">file:</
listchoice> within the selections tags. Then, replace the copied value (in
this example, i le:) with the new value.

To remove a protocol, delete the entire line on which it appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 386

Managing Hyperlink Dialogs

Selection Elements

Element Value(s) Description
Attribute
name type The name of this dropdown list.
enabled true (default) User can select from the list.
false User cannot select from the list; selections are grayed out.
visible true (default) List is visible.
false List is not visible.
listchoice/ 0 Protocol requires double slash marks (/). For example, http://
data www . yoursite.com.
1 Protocol does not require double slash marks (//). For example,
mai l'to:you@email _.com.
listchoice/ true This choice is the default type.
default
Note: http: is the default type if no value is specified.
false This choice is not the default type.
(default)
listchoice/ Any valid The internet protocols from which the user can choose.
text value protocol
(including the
colon).
Typically, one
of the
following:
file:, ftp:,
gopher:, http:,
https:,
JavaScript:,
mailto:,
news:, telnet:,
wais:

Target Frame List

Determines target window choices.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 387

Managing Hyperlink Dialogs

Illustration

Example

argef Frame: | j

M ew \window [_blank]
Same YWindow [_zelf]
Farent 'indow [_parent]

Quick Link: [ealort! .?.L':'.Wser WWindow [top]

<command name="cmdhyperlink" >
<image key="hyperlink'/>
<caption localeRef="cmdHyp"/>
<tooltiptext localeRef="cmdHyp"/>
<selections name=""target' enabled="true" visible="false">

<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
</selections>
</command>

value="main">Main Frame</listchoice>

value="_blank" localeRef="hypTargB"></listchoice>

value="_self" localeRef="hypTargS" default="true"></listchoice>
value="_parent" localeRef="hypTargP''></listchoice>

value="_top" localeRef="hypTargT''></listchoice>

Directions for Updating

Open config.xml.
Find the section of the file that begins with cmdhyperlink.

If the group of listchoice elements shown in the example above does not
appear under the cmdhyper 1 ink command, copy and paste the sample
selections list (above) into config.xml under the cmdhypertink command.

4. To add a target window, copy and paste the line <listchoice value="_blank"

localeRef="hypTargB"></listchoice> within the selections tags. Then,
replace the copied value (in this example, _blank) and localeRef with new
values.

To remove a target window choice, delete the entire line on which it appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 388

Managing Hyperlink Dialogs

Selection Elements

Element Value(s) Description
Attribute
name target The name of this dropdown list.
enabled true (default) User can select from the Target Frame list.
false User cannot select from the Target Frame list; selections are
grayed out.
visible true (default) Target Frame list is visible.
false Target Frame list is not visible.
listchoice/ Any valid frame name The list of target window types from which the user can choose.
value or one of the following
special names:
_blank,
_self, _parent,
_top
listchoice/ reflD A code to translate this element within the localization files.
localeRef
listchoice/ true This choice is the default type.
default
false (default) This choice is not the default type.
listchoice/ Text to appear in the target list if no localeRef is found.
<display
text>

Specifying Default Values for the Insert Hyperlink Dialog

You can customize the default values that appear in the Insert Hyperlink dialog
box. To do this, enter a text data argument of HTML hyperlink (that is, <A> tag)
attributes when sending the command in JavaScript.

For example:
var strAttrs = "type="video/mpeg" href="ski.mpeg" text="Learn to Ski"";
eWebEditPro. instances[sEditorName].editor . ExecCommand(*‘cmdhyperlink, strAttrs, 0);

If you do, the Insert Hyperlink dialog will have the default values specified in the
attributes string. You can also specify attributes that do not appear in the dialog.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 389

Managing Hyperlink Dialogs

The following table explains how to set a default value for each field in the Insert
Hyperlink dialog.

Field How to Set Default Value

Type Taken from the href attribute. For example, href="ftp://domain.com/" illustrates
the type “ftp”.

Link The href attribute without the protocol (Type) or bookmark

Bookmark Taken from the href attribute. For example, href="http://domain.com/
file.htm#bkmark*

Text Use the 'text' pseudo attribute. For example, text="Learn to Ski"

Target Frame The target attribute. For example, target=""_blank"

Quick Link Cannot set default

Entering the Sample Code

Enter the sample code in a customevents.js file, in a onexeccommand handler
function (for details, see “Creating a Custom Command” on page 215). The
command is executed when the user selects it from a custom dropdown list or
presses a custom button.

To learn how to create a custom dropdown list, see “Creating a Popup Menu” on
page 181.

To learn how to create a custom button, see “Creating a Custom Command” on
page 215.

Editing the New HyperLink Dialog Box

The New Hyperlink toolbar button (%) lets users quickly add a hyperlink to their
Web content. The hyperlink command, jshyperlink, resides in the external
section of the configuration data.

To add a hyperlink, the user selects text, clicks the New Hyperlink button, and
selects a “Quick Link” (the name assigned to a URL) from a drop down menu.

Quick Links | =l

Ektrn:m
Ektron Products
Ektron eVehEditFro

By default, the Quick Links field has three values:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 390

Managing Hyperlink Dialogs

Ektron (http://www.ektron.com)
Ektron Products (http://www.ektron.com/products)
Ektron eWebEditPro (http://www._ektron.com/ewebeditpro)

Editing Quick Links

To edit the list of Quick Links from which a user can select, follow these steps.

1. Using your favorite program editor, open hyperlinkpopup.htm. This file is in
your server’s eWebEditPro installation directory, typically
c:\inetpub\wwwroot\ewebeditpro5.

2. Move to the section of the file that begins with <td>Quick Links </td>.
That section looks like this.

<td>Quick Links </td>
<td>
<l--- This should by Dynamically created. --->

<select name="hyperlinklist" size="1" onchange="movelink()">

value="""></option>

value="http://www.ektron.com">Ektron</option>
value=""http://www.ektron.com/products'>Ektron Products</option>
value=""http://www.ektron.com/ewebeditpro’>Ektron eWebEditPro</option>

<option
<option
<option
<option
</select>
</td>

Removing Quick Links

To remove any Quick Link, delete the entire line on which it appears.

Adding Quick Links

To add a Quick Link, follow these steps.

1.

Copy and paste the line <option value="""></option> within the
select tags.

Within the quotes (**), enter the URL that you want users to select as a Quick
Link.

Following the greater than sign (>) after the quotes, enter the text that will be
inserted into the Web content to identify the hyperlink.

For example, to provide a Quick Link to yahoo, the line would look like this.

<option value="http://www.yahoo.com'>Yahoo</option>

Dynamically Creating the Quick Links File

You can dynamically create the Quick Links file, hyperlinkpopup.htm, and
populate the list of Quick Links from a database. The hyperlinkpopup.htm file is
specified within the ewebeditproevents.js file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 391

Managing Images

Typically, users insert images into content while editing within eWebEditPro.
How those images are uploaded to the server is described in "How Image
Selection Works” on page 392.

However, if a user is editing within another application (such as Microsoft
Word), the user can insert images within the other application, paste the
content into eWebEditPro, and upload those images to the server. This
process is described in "Automatic Upload” on page 457.

How Image Selection Works

NOTE This section assumes that you have not edited the commands in the
mediafiles feature of the configuration data.

1. The user clicks the Insert Image button (), which executes the
configuration data’s cmdmfumedia command.

2. The cmdmfumedia command calls the
eWebEditProMediaSelection function in the ewebeditpromedia.js
file. That function displays the Picture Properties dialog box.

Picture Properties
— Eile Selection ’TI
I Cancel |
Images: j Select Mew File | Dptions |
— Lapout — Preview
widh: o
Height; IU—
Border Thickness: IU—
Alignment; Im
Rezet |
— Spacing
Horizontal: IU—
Wertical: IU—

Title: I

3. The user clicks the Select New File button.

The editor checks the value of the type attribute of the mediafiles
feature in the configuration data.

— If you set the value to FTP, you need to set up image selection via
FTP. (See “FTP File Upload” on page 409.)

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 392

Managing Images

— If you set the value to an HTML file pathway, that page is loaded. This

option typically displays a screen that prompts the user to select an

image. More details about this option are provided in “Customizing the

Alignment Field of the Picture Properties Dialog” on page 394.

5. The Picture Properties dialog box reappears with the selected image. The
user can change the image properties if desired.

6. When the user clicks OK, the image is inserted into the content.

feature.

Organization of the Image Selection Documentation

The rest of this section describes the various aspects of the image selection

This section

Describes

"Customizing the Alignment Field of the
Picture Properties Dialog” on page 394

Modifying the Alignment field of the
Picture Properties dialog box

“The ewebeditpromedia File” on
page 232

Customizing the external media file
selection process

"Examples of Implementing Image
Selection” on page 396

How to create the image selection screen

“Implementing Image Upload” on
page 409

How to implement media upload under
different environments

“The Mediafiles Feature” on page 430

The elements of the mediafiles feature

“Manipulating Media File Methods and
Properties” on page 423

The methods and properties of the Media
File Object

“Programmatically Accessing Media File
Properties” on page 425

Programmatically accessing the Media
File Object’s properties

“Dynamically Selecting Upload
Destinations” on page 450

Using scripting to change the image file
upload location

"Automatic Upload” on page 457

Uploading images in content copied from
another application

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

393

Managing Images

Customizing the Alignment Field of the Picture Properties Dialog

You can modify the list of possible responses to the Alignment field of the Picture
Properties dialog box (illustrated below). You can also specify a default response
or remove the field from the dialog.

Picture Properties

Border Thickness:

FT____-
Height: ID

d !

[

~ 4
Alighrment: I Right X
— Spacin
pacing AbsMiddle
Horizontal. AbsBattamn
ertical: g::g“ﬁg -
L e S ——

Modifying Alignment Field Responses

To modify the list of possible responses to the Alignment field, enter a dropdown
list of all possible values (illustrated below). Remove values that the user should
not be able to select.

<mediaconfig enabled=""true" allowedit=""true">

<selections
<listchoice
<listchoice

name="alignment" visible=""true">
value=""" localeRef=""picNS'"/>
value="left" localeRef=""picAlilL"/>

<listchoice value="right" default="true" localeRef=

<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice

value="top" localeRef="picAliT"/>
value="middle" localeRef=""picAliM"/>
value="bottom" localeRef=""picAliB"/>
value="absmiddle" localeRef="picAliAM"/>
value=""absbottom" localeRef="picAliAB"/>
value=""texttop" localeRef="picAliTT"/>
value="baseline" localeRef="picAliBL"/>

</selections>

</mediaconfig>

Note that

® The name of the selections list must be al ignment.

— File Selection
Images: j
— Layout — Pich
Wwidth:

‘picAliR"/>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

394

Managing Images

® The text in the command attribute becomes the al ign value used. (The
command in this list is not sent to the client scripting.)

® |f no command value is given, when the user selects the option, no align
attribute is assigned to the img tag.

® The #text is the description shown to the user. It does not need to match the
text in the command attribute.

— It can be translated using the localeRef attribute
— If it is omitted or not translated, the text in the command attribute is used

® The list must be in either the cmdmfumedia command definition (shown
below) or in the mediaconfig element (shown above). If the list appears in
both locations, the cmdmfumedia command takes precedence.

<command name="cmdmfumedia" >
<caption localeRef="cmdPic"/>
<image key="picture'/>
<tooltiptext localeRef="cmdMore'/>
<selections name="alignment''>

<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
<listchoice
</selections>
</command>

value=""" localeRef="picNS" default=""true>Not Set</listchoice>
value="left" localeRef="picAliL">My Left</listchoice>

value="right" localeRef="picAliR">My Right</listchoice>

value=""top" localeRef="picAliT">Top</listchoice>

value="middle" localeRef="picAliM">Middle</listchoice>
value="bottom" localeRef="picAliB">bottom</listchoice>
value=""absmiddle" localeRef="picAliAM">Absolute Middle</listchoice>
value=""absbottom" localeRef=""picAliAB"">Absolute Bottom</listchoice>
value=""texttop" localeRef="picAliITT">Text Top</listchoice>
value="baseline" localeRef="picAliBL">Base Line</listchoice>

Setting a Default Response for the Alignment Field

NOTE

To specify a default response for the Alignment field, add the attribute
default="true" to the default value. In the example below, right will be the
default response for the Alignment field.

The selections element must include at least one selection for the list to be valid.
The visible attribute is only checked when there is a valid dropdown list.

<mediaconfig enabled="true" allowedit="true'">
<selections name="alignment" visible=""true'">
<listchoice value=""" localeRef="picNS"/>
<listchoice value="left" localeRef="picAlilL"/>
<listchoice value="right"default="true"localeRef="picAliR"/>
<selections

Removing the Alignment Field from the Picture Properties Dialog

To remove the Alignment field from the Picture Properties dialog box, set the
dropdown list's visible attribute value to false, as illustrated below.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 395

Managing Images

NOTE The selections element must include at least one selection for the list to be valid.

<mediaconfig enabled="true" allowedit=""true'">
<selections name="alignment" visible="fTalse">
<listchoice value="left" localeRef="picAlilL"/>
</selections>
</mediaconfig>

Examples of Implementing Image Selection

This section provides four examples of how to create the image selection screen
mentioned in Step 4 of “How Image Selection Works” on page 392. This table
summarizes the examples.

Example File Upload? Upload Administrator
protocol restricts image?

1: No Restrictions, No no n/a no
Saving to Database

2: File Size Restriction, no n/a yes
No Saving to Database

3:FTP determined by Web FTP yes
master

4: Database Samples yes - URL stored in HTTP yes
database

Example 1: No Restrictions, No Saving to a Database

In this example, the user inserts an image from a remote directory. The image is
not uploaded to a database, and no restrictions are imposed on the image.

To incorporate this version of image selection, follow these steps.

1. Within the ewebeditpro5 directory, create an .htm file, for example,
imageselection.htm.

2. Within the imageselection.htm file’s head tags, include the ewbeditpro.js file.
<script language="JavaScriptl.2" src="ewebeditpro.js'>
<script>

(For more information, see “Customizing the Alignment Field of the Picture
Properties Dialog” on page 394.)

3. Still within the document’s head tags, create an insertfile function that calls
the standard insertMediaFile function. (See “Method: insertMediaFile”
on page 74.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 396

Managing Images

NOTE In the following example, the editor name appears as MycContentl. Replace this
with the name of the editor from which the user is inserting the image. See Also:
“Appendix A: Naming the eWebEditPro Editor” on page 576.

<script language="JavaScriptl.2">
<l--
function insertfile()

{

top.opener.eWebEditPro. instances[''MyContentl"]. insertMediaFile(txtpath.value,false,"", " IMAGE"
,0,0); window.close();

}

—-——>
</script>

Be sure to specify the parameters for insertMediaFile.

Parameter Value in this
example

file location txtpath.value

is the file local? false

file title

file type " IMAGE"

width 0

height 0

NoOTE By entering zero (0) as the image’s width and height, the administrator is allowing
the image to retain its original dimensions. The user can edit these values in the
Picture Properties dialog box, which appears when the image is inserted.

(For more information, see “Specifying an Image to Insert” on page 428.)
4. Enter text to prompt the user to specify the path to the image. For example

Enter path to image file:

5. Create an input field to accept the user’s input. For example
<input type=text name="txtpath" size=30 value=""'>

6. Create a button to invoke the insertfile function.
<input type=button name="btninsert" value="insert" onclick="insertfile()">

7. Open the config.xml file. Within the mediafi les feature, at the transport
type attribute, enter the path to the .htm file relative to local host. Place
quotes around the path. For example

<transport type='"/ewebeditpro5/imageselection._htm'>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 397

Managing Images

As a result, the following screen appears when the user presses the Select New
File button on the Picture Properties dialog box.

3 Untitled - Microsoft Internet Explorer

Enter path to image file: | ingert |

WARNING! If, while identifying an image, the user enters a pathway in a field used by
JavaScript, the user must enter two backslash characters wherever they would
normally enter one. As an alternative, the JavaScript could convert the backslash
characters.

When the user enters a path to an image and clicks the insert button, the
insertMediaFile command passes the image file information to the Picture
Properties dialog box.

Below is the. htm file that you would use to implement this version of image
selection.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Untitled</title>
<script language=""JavaScriptl.2" src="ewebeditpro.js">

</script>

<script language=""JavaScriptl.2">
<l--

function insertfile()

{

top.opener.eWebEditPro. instances[''MyContentl"]. insertMediaFile(txtpath.value,false,"",
"IMAGE",0,0);
window.close();
3
—-——>
</script>
</head>

<body>

enter in a path:

<input type=text name=""txtpath" size=30 value=""'>

<input type=button name="btninsert” value="insert” onclick="insertfile()">
</body>

</html>

For reference, the following illustrates the mediafi les section of the
configuration data.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 398

Managing Images

<mediafiles>
<command name="‘cmdmfumedia” style="icon" visible="true">
<image key="picture'/>
<caption localeRef="btnTxtrunapp'>Image File</caption>
<toolTipText localeRef="btnrunapp>Image File</toolTipText>
</command>
<!-- 0 is unlimited size -->
<maxsizek>1000</maxsizek>
<validext>gif, jpg,png,jpeg,jif</validext>
<mediaconfig enabled="true" allowedit=""true"/>
<I-- If this section is not defined it will default to FTP with no settings -->
<l-- The attribute "type" values "ftp" and "file" are handled within the editor. -->
<I-- The scripting will load the page specified in the type attribute. -->
<transport enabled=""true" type="/ewebeditpro5/ imageselection.htm"
confirmation="true" xfer="binary" pasv="true">
<I-- Encrypt username and password using Ektron®s encrypt.exe program. -->
<I-- blank for user entry -->
<username encrypted="true'></username>
<password encrypted=""true"></password>
<I-- Set to O for default port number -->
<port>0</port>
<I-- Upload location is: [domain]+[xferdir]+[filename] -->
<domain></domain> <!-- e.g., ftp.mydomain.com -->
<!-- Directory transferred into relative to domain -->
<xFferdir src="[eWebEditProPath]/upload"/>
<I-- Referencing a file through HTTP is: [webroot]+[filename] -->
<!-- if webroot is blank then it defaults to xferdir value -->
<webroot src=""/>
<I-- Possible values for resolvepath are: full, host, local, given -->
<resolvemethod value="local" src=""/>
</transport>
</mediafiles>

Example 2: File Size Restriction, No Saving to Database

In this example, the user inserts an image from a remote directory. The Web
master sets a maximum image size of 100 Kb. If the user tries to insert an image
larger than 100 Kb, an error message appears and the insertion is terminated.

NOTE You can also use the mediafi les feature of the configuration data to limit the file
types that users can insert, using the val idext attribute. You implement this
restriction in the same way you implement maximum file size.

To incorporate this version of image selection, follow these steps.

1. Within the ewebeditpro5 directory, create an .htm file, for example,
imageselect_100kb.htm.

2. Within the document’s head tags, include the ewbeditpro.js file.
<script language="JavaScriptl.2" src="ewebeditpro.js'>
</script>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 399

Managing Images

3. Still within the document’s head tags, create a JavaScript function (in this
example, sizeisok) that checks the size of the file selected by the user. If it
exceeds 100 Kb, return false; otherwise, return true.

Note that in the example below, the variable maxsize refers to the
maxsizek attribute of the mediafile feature in the config.xml file. In Step 6,
you set the value of the maxsizek attribute.

NoOTE In the following example, the editor name appears as Mycontent1. Replace this
with the name of the editor from which the user presses the Insert Picture button.
See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.

function sizeisok()

{
var objmedia = top.opener.eWebEditPro.instances["MyContentl'].editor._MediaFile();
var maxsize = objmedia.getPropertylnteger(""MaxFileSizeK™);
ifT ((objmedia.FileSize) > maxsize*1024)
{
return (false);
3
else
{
return (true);
}

NOTE If you are using Netscape, you cannot access the ActiveX objects (such as
objmedia.MaxFileSizeK and objmedia.FileSize) directly. Instead, use
one of the getProperty methods to retrieve these values. (See “Using Netscape
to Access Image Properties” on page 425.)

4. Create a function (in this example, insertlocal file) that checks the
value of the sizeisok function.
If the sizeisok function returns false, an error message appears ("File is
too large."). If the function returns true, the insertMediaFile command
passes the image file information to the Picture Properties dialog box.

function insertlocalfile()

{

var objmedia = top.opener.eWebEditPro.instances["MyContentl'].editor_MediaFile();

objmedia.IsLocal = true;
objmedia.SrcFileLocationName = txtpath.value;
if(sizeisok() == false)

{

}

else

{

top.opener.eWebEditPro. instances[''"MyContentl']. insertMediaFile(txtpath.value,true,”","IMAGE",
0.0):

alert(*"File is too large.™);

window.close();

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 400

Managing Images

For a description of the rest of the code in this example, see steps 3 through
6 in “Example 1: No Restrictions, No Saving to a Database” on page 396.

5. Open the config.xml file. Within the mediafi les feature, at the transport
type attribute, enter the path to the .htm file relative to local host. Place

quotes around the path. For example
<transport type="/ewebeditpro5/imageselect_100kb.htm">

6. While in the config.xml file, set the value of the maxsizek attribute to 100.

<mediafiles>
<maxsizek>100</maxsizek>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 401

Managing Images

Below is the entire .htm file that you would use to implement this version of image
selection.

<IDOCTYPE HTML PUBLIC **-//W3C//DTD HTML 4.0 Transitional//EN">
<l--
How to set up in XML:

<mediafiles>

<maxsizek>100</maxsizek>
<transport type="/ewebeditpro5/imageupload_100kb.htm">
</transport>
</mediafiles>
-
<html>
<head>
<title>Untitled</title>
<script language="JavaScriptl.2" src="ewebeditpro.js'>

</script>

<script language="JavaScriptl.2">
<l--

function insertlocalfile()

{

var objmedia = top.opener.eWebEditPro. instances["MyContentl'].editor.MediaFile();
objmedia.IsLocal = true;

objmedia.SrcFileLocationName = txtpath.value;

if(sizeisok() == false)

alert(“File is too large.");

}
else
{
top.opener.eWebEditPro. instances["'MyContentl']. insertMediaFile(txtpath.value,true,"","IMAGE",0,0);
window.close();
}
3
function sizeisok()
{
var objmedia = top.opener.eWebEditPro.instances["MyContentl™].editor._MediaFile();
var maxsize = objmedia.MaxFileSizeK;
if ((objmedia.FileSize/1024) > maxsize)
return (false);
}
else
{
return (true);
¥
-
</script>
</head>
<body>

enter in a path:

<input type=text name='"txtpath" size=30 value=""">

<input type=button name="btninsert" value="insert" onclick="insertlocalfile()">
</body>

</html>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 402

Managing Images

For reference, the following illustrates the mediafiles section of the configuration
data.

<mediafiles>
<command name="cmdmfumedia” style="icon" visible="true">
<image key="picture'/>
<caption localeRef="btnTxtrunapp'>Image File</caption>
<toolTipText localeRef="btnrunapp>Image File</toolTipText>
</command>
<I-- 0 is unlimited size -->
<maxsizek>100</maxsizek>
<validext>gif, jpg,png,jpeg,jif</validext>
<mediaconfig enabled="true" allowedit=""true"/>
<I-- If this section is not defined it will default to FTP with no settings -->
<l-- The attribute "type" values "ftp" and "file" are handled within the editor. -->
<I-- The scripting will load the page specified in the type attribute. -->
<transport enabled=""true" type='/ewebeditpro5/ imageselection.htm" confirmation="true"
xfer="binary" pasv='"true'>
<I-- Encrypt username and password using Ektron®s encrypt.exe program. -->
<I-- blank for user entry -->
<username encrypted="true'></username>
<password encrypted=""true"></password>
<l-- Set to 0 for default port number -->
<port>0</port>
<I-- Upload location is: [domain]+[xferdir]+[filename] -->
<domain></domain> <!-- e.g., ftp.mydomain.com -->
<I-- Directory transferred into relative to domain -->
<xferdir src="[eWebEditProPath]/upload"/>
<I-- Referencing a file through HTTP is: [webroot]+[filename] -->
<!-- if webroot is blank then it defaults to xferdir value -->
<webroot src="""/>
<!-- Possible values for resolvepath are: full, host, local, given -->
<resolvemethod value="local" src=""/>
</transport>
</mediafiles>

Example 3: FTP

You can implement image selection using FTP. To do this, enter FTP at the type
attribute of the mediafi les feature of the configuration data. Enter the additional
FTP information, such as domain, user name, port, and upload location in the
mediafiles section of the configuration data.

Implementing FTP image selection can vary widely, depending on your system.
Therefore, the Web master should determine how best to implement FTP-based
image selection.

The next section provides an example of how to set up the configuration data for a
typical FTP site. This example assumes that the FTP site and the Web site share
the same physical server.

See Also:

® “FTP File Upload” on page 409

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 403

Managing Images

Minimum Configuration Requirements for FTP
These are the minimum configuration requirements if you use the FTP upload
mechanism.

® The FTP site and the file’'s Web reference site must share the same physical
server.

® The FTP server must be configured to allow access to a location that is also
accessible through a Web browsing mechanism, that is, HTTP. If the FTP
server is set to start in a directory structure that cannot be reached by a Web
browser, the uploaded images cannot be displayed.

Server Configuration

Assume that FTP is set up with these parameters.

Parameter Value

Domain ftp.mydomain.com

Physical FTP Root c:\inetpub\www\ftp

Images reside in /shared/images

Physical image c:\inetpub\ww\ftp\shared\imag
location es

Connection Port Standard FTP Port

Data Transfer Style Binary Data

Connection Mode Must use passive mode for firewall

Assume that the Web site is set up with these parameters.

Domain www . mydomain.com

Physical WWW Root c:\inetpub\www

Page Location (Base /public/pages
URL)

Physical Page c:\inetpub\www\public\pages
Location

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 404

Managing Images

To implement the above configuration, you would set these values in the
mediafi les section of the configuration data.

<transport type="ftp" xfer="binary" pasv="true'>
<domain>ftp.mydomain.com</domain>

<xferdir src="/shared/images'/>

<webroot src="http://www.mydomain.com/public/pages"/>

Notice that since this example uses the standard FTP port, it does not include the
port element.

Restriction Settings

To continue with the example, the administrator wants to add these restrictions to
any uploaded images.

File Extensions gif, jpg

Maximum File Size 12K

Login User must log in to FTP account

File Referencing All reference paths are relative to the
local page

To implement these restrictions, you would set these values in the mediafiles
section of the configuration data.

<validext>gif, jpg</validext>

<maxsizek>12</maxsizek>

<username></username>

<password></password>

<resolvemethod value="local'/>

User Interface Control

The administrator does not want to let the user review any of the settings. The
login dialog must be shown for the user to log in.

<mediaconfig enabled="true" allowedit="false"/>

Selecting Files from the Server

If you implement image selection using FTP, the Media File Selection dialog
displays a Select Server File button that lets the user insert an image stored on
the server.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 405

Managing Images

Media File Selection
— Eile Selection QK. I
Il - Cancel |
lmages(Select Server File | Select New File | Options |
r— Layout r— Picture
width:
Height:

Barder Thickness:

Alighment:

Beset

)

¥ Maintain Aspect Ratio

— Spacing
Harizantal: ID
Wertical: ID

Title: I

If a user clicks the button, a second screen displays the folder tree with the
folders, sub-folders and their files in the FTP directory. The FTP folder is defined
in the xferdir element. See Also: "Xferdir Element” on page 441.

NOTE The default display name for the FTP Root folder is “Server.” To modify it, use the
xFerDispName attribute of the xferdir element.

The user can select any image from the folder structure and preview it before
inserting.

Image Explorer
— Ficture
=
Unlach your Wek patential!
D h [-]
Select: IfolderEa’indeH-simlie.ipg
| ok I LCancel

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 406

Managing Images

FTP Configuration in XML

The sample configuration described above uses this example MediaFiles
section of the configuration data.

<mediafiles>
<command name="‘cmdmfumedia” style="icon" visible="true">
<image key="picture'/>
<caption localeRef="btnTxtrunapp'>Image File</caption>
<toolTipText localeRef="btnrunapp'>Image File</toolTipText>
</command>
<maxsizek>12</maxsizek>
<validext>gif, jpg</validext>
<mediaconfig enabled="true" allowedit="false"/>
<transport type="Tftp" xfer="binary' pasv="true">
<username></username>
<password></password>
<port>0</port>
<domain>ftp.mydomain.com</domain>
<xferdir src="/shared/images'/>
<webroot src="http://www.mydomain.com/public/pages"/>
<resolvemethod value="local"/>
</transport>
</mediafiles >

Example 4: Database Samples

When you install eWebEditPro, you have an option to install database samples
for your platform. For example, if you are running ASP, you can install ASP
database samples.

See Also: “ASP” on page 411

If you install database samples, a sample image selection screen is provided.
(Where the image selection screen fits into the workflow of selecting an image is
explained in Step 4 of “How Image Selection Works” on page 392.)

The sample screen lets the user select images from local directories or a server,
upload files to a server, and preview an image before returning to the Picture
Properties dialog box.

You can use the sample image selection screen as is, or modify it as needed for
your users.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 407

Managing Images

Below is the ASP sample image selection screen, with callout boxes to label the
areas of the screen.

43 Insert Media Item - Microsoft Internet Explorer

To

To

Select an Existing File:

LUTIEE
ekiran logo
file properies
server
selection
Delete

Select a Local File:

Enter a description for the file.

File Information:

Filelength: 135 Bytes

Width: 16

Prewiew camera

Browse... |

local file brovwse

zelection

K.

file information

Height: 16

presviesy

Cancel

The following table describes the files that make up the ASP database sample.
Samples for other platforms use essentially the same files -- only the file
extensions are different.

Frame File Name Function - Allows the userto | Operation

Name

server medialist.asp Select a file that resides on the Retrieves titles of all media files
selection server. in the database, then builds an

option list box for displaying the
titles.

The user can highlight the
desired title. When the user
highlights a title, the preview
frame, the local file browse
frame, the file information
frame, and the selection frame
are updated to reflect the
selection.

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1,

Revision 1 408

Managing Images

Frame File Name Function - Allows the user to | Operation
Name
local file mediauploader.asp Choose a file from the local Lets the user choose a local file
browse system. The local file is and assign it a title. When the
uploaded before it is inserted user enters a local file, the
into the editor. server selection frame, the file
information frame, the preview
frame, and the selection frame
are updated to reflect the
selection.
file mediainformation. View file information, including Displays information about file
information asp its length in bytes and, if the file | the user selected, whether the
is an image, its width and height file is server-based or local.
in pixels.
preview mediapreview.asp Preview the selected file. Lets the user preview the
highlighted file before selecting
it.
selection mediainsert.asp Select a file. If a local file is Allows the user to select a
selected, the file is uploaded server file or a local file. It also
before it is inserted into the ensures that a tile has been
editor. entered if the user selects a
local file.

Implementing Image Upload

This section describes the following methods and options for enabling users to

upload images and other files to your Web server.

e FTP
e HTTP

- ASP

— ColdFusion

— other Web servers

Security issues surrounding each approach are explained.

FTP File Upload

You can use FTP (file transfer protocol) to copy files from the user's (or client)
computer to the Web server. The Web server must have an FTP server to
establish a connection and receive a file from the client computer. Many server
operating systems provide an FTP server. Commercial FTP server software is
also available.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 409

Managing Images

eWebEditPro can notify the server when a file is uploaded via FTP. This
capability allows the server to update a database with the list of uploaded files.

To enable this notification, implement the eWebEditProMediaNotification
function in JavaScript. This function opens a dynamic Web page and passes file
information to the server, typically through URL parameters.

Security with FTP

Usually, you have an FTP account with a user name and password. When
uploading files through eWebEditPro, your FTP user name and password must
be specified. To keep them secret, use Ektron's encryption program to scramble
your user name and password.

Enter the user name and password in the username and password elements of
the mediafi les feature of the configuration data. An example appears below.

<mediafiles>

<transport enabled=""true" type="ftp" confirmation=""true" xfer="binary" pasv="true'>
<I-- Encrypt username and password using Ektron"s encrypt.exe program. -->
<!l-- blank for user entry -->
<username encrypted="true'>zVQjUOPG</username>
<password encrypted=""true'">uDekdcUF</password>

You may download Ektron's encryption program and view the Encryption User's
Guide from Ektron’s Web site.

HTTP File Upload

You can use HTTP (the same protocol that displays a Web page) to upload image
files from a user's computer to a Web server. All Web servers support HTTP, but
they usually require additional software to receive files from a client computer.
Many Web application servers, such as ASP and ColdFusion, provide functions to
write files to the Web server's file system.

NOTE If a user deletes an image from the images list, the image is removed from the
database but not from the physical directory on the server.

Overview

HTTP image upload with eWebEditPro uses standard Web pages. You can write
your own or use the samples provided with eWebEditPro.

Typically, Web pages that upload images or other files include the elements
shown below. Note that

® the enctype must be "multipart/form-data"

® you must specify an action page

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 410

http://www.ektron.com/software/released/installation/ewebeditpro/EncryptUsersGuide.pdf
http://www.ektron.com/software/released/installation/ewebeditpro/EncryptUsersGuide.pdf

Managing Images

® the input type of "file" displays a text box for the file name and a Browse
button that lets the user select a file to upload

<form name=""MyFormName" method="post" action="MyActionPage.xyz"
enctype="multipart/form-data" OnSubmit="return MyValidateFormData()'>

<input type="file" name="MyUploadFile" size="20" maxlength="256" align="MIDDLE">
</form>
ASP

Microsoft Active Server Pages (ASP) include the ability to write text files to the file
system, but do not have the native ability to write binary files. Since images (GIF
and JPG) and other files (such as, audio, video, and Microsoft Office documents)
are binary, an additional component is required.

Older versions of eWebEditPro on ASP used a propriety method to upload image
files via HTTP. A server-side COM DLL, EkFilelO.DLL, was required to save the
image file.

With eWebEditPro 2.0 and higher, image upload uses standard multipart form
data to upload the file. As a result, you can use any commercially- available file
upload software for ASP. A popular file upload package for ASP is FileUp,
available from SoftArtisans at http://www.softartisans.com/softartisans/
saf._html.

Ektron still provides a server-side COM DLL, EktronFilelO.DLL (note the name
change), for file upload support on a Windows NT 4 or Windows 2000 server.

EktronFilelO.dll

EktronFilelO.dll is a COM object that retrieves a file from multipart form data that
has been submitted to the server. It then writes the file to the server's file system.

The COM object is created by the action page that is opened when the form is
submitted. The ASP database sample, supplied with eWebEditPro includes
EktronFilelO.dll and an action page, medianatification.asp, to receive uploaded
files. In it, you will see the object created using
CreateObject("’EktronFilelO.EkFile™).

Registering EktronFilelO.dll

EktronFilelO.dll adds information to the Windows registry that allows the ASP
page to create the COM object. As a result, you must register EktronFilelO.dIl on
the Web server before you can use it.

If you ran the Windows installation and responded Yes when the following dialog
box appeared, the EktronFilelO.dll is already registered.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 411

http://www.softartisans.com/softartisans/saf.html
http://www.softartisans.com/softartisans/saf.html

Managing Images

Question 5]

Do pow want to register the Ektron file upload component far A5P7?
[F hiot, wou will heed to use another mechanism to upload images in ASP

If you need to register EktronFilelO, open a command prompt and run regsvr32.
By default, the EktronFilelO.dll is located in the Zewebeditpro5/samples/
asp/database directory under the Web root, but it can reside anywhere on the
server.

Here is the code you would enter to register EktronFilelO.dll if it is in the default
directory.

cd \inetpub\wwwroot\ewebeditpro5\samples\asp\database
regsvr32 EktronFilelO.dll

Licensed owners of eWebEditPro 2.0 and higher may download EktronFilelO.dll
onto their Windows Web server.

Security with ASP

The image selection page with the Browse button should validate the file
extension to upload. Security should also be in the ASP page that is the form's
action page.

The ASP page should check the file type and only accept files that are safe, such
as image files with extensions: gif, jpg, or png (see “Validext Element” on

page 432). You may also want to allow document files, such as, doc and pdf
extensions, or media files, such as wav, ram, and asf.

You should not allow ASP or HTML files to be uploaded; a malicious person could
gain control over the Web server and cause damage.

For best security, only allow authorized users to access a page with eWebEditPro
on it. Windows Server provides a user authentication capability.

Alternatively, you could use FTP, which is protected with a password. Image
upload can be disabled altogether on eWebEditPro if needed.

The ASP database sample supplied with eWebEditPro 2.0 and higher includes
an action page, medianotification.asp, to receive uploaded files.

The EktronFilelO’s API

EktronFilelO.dll is a Visual Basic 6.0 utility that allows ASP (and other platforms)
to write a multipart form file upload to the server's file system. The DLL handles
the following tasks:

® Extracts one "uploaded file" from the supplied data stream
® Saves the extracted file to a user-designated directory

® Returns form field values. ASP cannot access a form field if BinaryRead is
used anywhere in the page.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 412

Managing Images

® Handles a name conflict
® Handles permission setting on the new file (not supported in this release)

® Handles error reporting

The API closely resembles the ColdFusion CFFILE function. The interface is as
follows:

ReturnString = EkFileSave (“'BinaryFormData', "FormFieldName', ‘‘DestinationDir"™, ErrorCode,
[''NameConflict'], ["AcceptType™], [''FilePermissionSetting"],
["FileAttributes])ReturnedrFormFieldValue = fileObj.EkFormFieldValue(''BinaryFormData",
"FormFieldname™, ErrorCode)

Parameter Data Type Required / | Description
Optional

BinaryFormData Variant Required The entire form data in binary form
(String)

FormFieldName Variant Required The name of the field used in the
(String) original form

DestinationDir Variant Required The fully qualified path (for example
(String) c:\inetpub\wwwroot\test)

ErrorCode Variant Required A user-supplied variable. This is set
(Number) to 0 (zero) for successful execution.

Otherwise, it is set to one of the
error codes listed below.

NameConflict Variant Optional Determines the behavior when a
(String) requested filename conflicts with an
existing file.
AcceptType Variant Optional Determines which file types the
(String) upload will accept (for example,

image/gif, application/msword). Not
supported in this release.

FilePermissionSetting Variant Optional Not supported in this release.
(String)

FileAttributes Variant Optional Not supported in this release.
(String)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 413

Managing Images

Parameter Data Type Required / | Description
Optional
ReturnString Variant Always If ErrorCode (see above) is O (zero),
(String) returned this contains the filename that
stores the file, including the full
path. If ErrorCode is not zero, this
contains a matching error string.
Error Codes
ErrorCode | Description Internal/External
COM object Error
101 "Error: Form Field Name not found.” The user-requested Internal COM object
form field cannot be located. error
102 "Error: Cannot locate 'Content-Disposition' text." The Internal COM object
HTTP "Content-Disposition" header cannot be located error
in the form.
103 "Error: Cannot locate filename in form field." The user- Internal COM object
requested form field does not contain an associated error
filename. The requested form field may not be type
"File".
104 "Error: Bad Form Filename." The filename in the user- Internal COM object
requested form field is not properly formatted. error
105 "Error: Cannot locate binary file data." An error was Internal COM object
encountered while searching for the associated binary error
file data.
106 "Error: File Already Exists" The filename that the form Internal COM object
requested is already in use, and the COM object is not error
allowed to rename the file.
XXX Windows system errors reported while writing or External: Code and
deleting the requested filename. error string returned by
the operating system.

Using EktronFilelO for Your Own Image Uploads

Often, the uploading of files, such as images, is made possible by a set of Web
pages created for a site. This section describes how to use the EktronFilelO DLL

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

414

Managing Images

(installed with the eWebEditPro server-side installation) in its most basic sense.
The eWebEditPro editor is not part of these samples. Gaining familiarity with the
DLL helps you to integrate it into your own external upload mechanism.

This section explains:

® Creating an ASP page that asks the user to select a file
® Creating an ASP page that performs the upload

® Examining the EktronFilelO upload method

® Examining return values for errors and file name changes

® Retrieving the values of field items on a submitted form

When using EktronFilelO, keep these in mind:
® The ASP mechanism processes the posted information

® The EktronFilelO must be registered on the server (see "Registering
EktronFilelO.dll” on page 411)

® For security reasons, files cannot be uploaded without user intervention

® All data sent to EktronFilelO is contained in a form that is posted to the server
Using EktronFilelO involves four steps:

1. Creating a Selection Web Page

2. Creating a Form with a File Selection Field Item

3. Creating an ASP Page to Activate the Posted Upload

4. Providing Upload Feedback

Step 1: Create a Selection Web Page

In this step, we create a simple ASP page that contains an upload and cancel
button. The Upload button is a submit button.

Below is the HTML for this page. Save the file as simpleupload.asp within the
server's Web directory.

<html>

<head>

<title>EktronFilelO Upload Example</title>

</head>

<body>

<hl>Upload a File with EktronFilelO</hl>

<input type="submit' name="btnupload” value=" -- Upload -- ">
<input type="'submit" name="btncancel" value="Cancel">
</body>

</html>

Step 2: Create a Form with a File Selection Field Item

Within the HTML that the user interacts with, we need to create a form that is
submitted to the server. The form contains the name of the file to upload and,
optionally, other information we may want to use.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 415

Managing Images

The form must contain these attributes and values:

method=""POST""
enctype="multipart/form-data"

The following attributes are also required, but their values depend on the
implementation. For our example, they contain these values:

action="performupload.asp"
name=""frmupload"

The ‘action’ attribute value, “performupload.asp”, specifies the page that activates
the upload mechanism. (We will create this page in Step 3.) We are naming the
form “frmupload”.

Here is the form added to the HTML.:

<html>
<head>
<title>EktronFilelO Upload Example</title>
</head>
<body>
<hl>Upload a File with EktronFilelO</hl1>
<form action="performupload.asp” method="POST" enctype="multipart/form-data"” name="frmupload">

<input type="submit' name="btnupload"” value=" -- Upload -- ">
<input type="'submit' name="btncancel’ value="Cancel">
</form>
</body>
</html>
The only required form item (other than the submit button) is a FILE input item.
The EktronFilelO uses this input type to retrieve the name of the file to upload.
Since this input item requires the user to physically select a file, it prevents files
from being uploaded erroneously from the client.
Below, the FILE input item is highlighted in red.
<html>
<head>
<title>EktronFilelO Upload Example</title>
</head>
<body>

<hl>Upload a File with EktronFilelO</hl1>
<form action="performupload.asp" method="POST" enctype="multipart/form-data"” name="frmupload">

Please select a file:

<I-- This is the only required field.
It contains the selected file to upload. -->
<input type="File" name="uploadfilephoto” size="20" maxlength="256">

<input type="submit' name="btnupload"” value=" -- Upload -- ">
<input type="'submit" name="btncancel"” value="Cancel">

</form>

</body>

</html>

The new lines also give the user feedback about what to do.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 416

Managing Images

The FILE input item contains the name and location of the local file to upload. The
EktronFilelO DLL reads this information from the form submittal and uploads from
the source location. For this sample, we hard code the destination location.

This is the full page for asking the user what file to upload. Next, we create the
ASP page that is called when a post event activates the upload mechanism.

Step 3: Creating an ASP Page to Activate the Posted Upload

The ASP page created above calls for a second page to be loaded when the form
we defined is posted. The second page contains ASP code that interacts with the
EktronFilelO DLL object and displays any feedback we need.

To create the second page, begin by creating a basic ASP page. Save this page
as performupload.asp in the same directory as the page created above. (This is
the same name that we placed in the action attribute of the form element above.)

<IDOCTYPE HTML PUBLIC *"-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Page That Activates Upload</title>
</head>
<body bgcolor="Silver">
<hl>Uploaded File</h1>
</body>
</html>

At this point, test the page to ensure that it loads when a post occurs. (If this
mechanism does not work, it does not matter how much ASP you place into your
pages.) To test it, load the first page in a browser. When you press the "Upload"
button, the second page with a gray background and the "Uploaded File" header
line should load.

Now, we’ll add the ASP that activates the upload with the EktronFilelO DLL.

<IDOCTYPE HTML PUBLIC "*-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Page That Activates Upload</title>
</head>
<body bgcolor="Silver'>
<hl>Uploaded File</hl1>

<%
Dim BinaryFormData, fileObj, ServerLocation
Dim strReturnString, ErrorCode

BinaryFormData = Request.BinaryRead(Request.TotalBytes)
set fileObj = CreateObject("EktronFilelO.EkFile™)
ServerLocation = "/images" " Hard coded the location for this sample.

strReturnString = fileObj.EkFileSave(BinaryFormData, "uploadfilephoto™, _
Server .MapPath(ServerLocation), ErrorCode, "makeunique')
%>

</body>
</html>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 417

Managing Images

Here are some things to notice in the code:

® We hard coded the destination location. (See "Making the Destination
Location Dynamic” on page 420 to learn how to dynamically set this value.)

® We performed a binary read to load the file into the form.
® An object reference to EktronFilelO is created for the upload.
® The "uploadfilephoto” input item specifies which item has the file selection.

® The upload may change the file name, so the actual name returned is placed
into the strReturnString variable.

You can upload any file to the "/images" location. Test this by uploading a file.

You can stop here if you like. This example continues to explain how to handle
errors and give other feedback.

Step 4: Providing Upload Feedback
Error Handling

Errors are returned in the variable given to the EkFileSave method. In our
example, it is the ErrorCode variable. Here, we use it to display a status.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Page That Activates Upload</title>
</head>
<body bgcolor="Silver'>
<hl>Uploaded File</h1>
<%
Dim BinaryFormData, fileObj, ServerLocation
Dim strReturnString, ErrorCode

Dim BinaryFormData, fileObj, ServerLocation
Dim strReturnString, ErrorCode

BinaryFormData = Request.BinaryRead(Request.TotalBytes)
set fileObj = CreateObject(*'EktronFilelO.EkFile™)
ServerLocation = "/images" " Hard coded the location for this sample.

strReturnString = fileObj.EkFileSave(BinaryFormbata, ‘‘uploadfilephoto™, _
Server .MapPath(ServerLocation), ErrorCode, "makeunique'™)
%>

% if (0O = ErrorCode) then %>
<h3>Load Succeeded</h3>
<% else %>
<h3>Load Failed with Error = <%=(ErrorCode)%></h3>
<h3>Error Description = <%=(strReturnString)%></h3>
<% end If %>

</body>

</html>

If there is an error, the returned string is an English description of it.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 418

Managing Images

Displaying Selection Information from Field Items

The name of the file is retrieved using the EKFormFieldValue method. This returns

the value of any field on the form.

Here is an example of using the method to display the file selected for upload.

<IDOCTYPE HTML PUBLIC ""-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>

<title>Page That Activates Upload</title>

</head>
<body bgcolor="Silver'">
<hl>Uploaded File</h1>

<%

%>
<%

<%

<%

Dim BinaryFormData, fileObj, ServerLocation
Dim strReturnString, ErrorCode, UploadFileName

BinaryFormData = Request.BinaryRead(Request.TotalBytes)
set fileObj = CreateObject("EktronFilelO.EkFile™)
ServerLocation = "/images"™ ~ Hard code the location for this sample.

UploadFileName = fileObj.EkFormFieldValue(BinaryFormData, "uploadfilephoto™, ErrorCode)

response.write(Uploading the file: ™ & UploadFileName)

strReturnString = fileObj.EkFileSave(BinaryFormData, "uploadfilephoto™, _
Server .MapPath(ServerLocation), ErrorCode, "makeunique'™)

if (0 = ErrorCode) then %>
<h3>Load Succeeded</h3>
else %>

<h3>Load Failed with Error = <%=(ErrorCode)%></h3>

end if %>

</body>
</html>

<%

<%

<%

Displaying the Resulting File Name

When a file is loaded, the "makeunique" option modifies the file name to be

unique if it exists. The string returned from the EkFormFieldValue call contains the

name of the file as it exists on the server. This does not include the path.

This name, with the destination path, should be used for any reference values

from HTML.

if (0 = ErrorCode) then %>
<h3>Load Succeeded</h3>

<p>The file now exists at: <%=(ServerLocation)%>/<%=(strReturnString)%></p>

else %>

<h3>Load Failed with Error = <%=(ErrorCode)%></h3>
<h3>Error Description = <%=(strReturnString)%></h3>

end if %>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

419

Managing Images

Making the Destination Location Dynamic

We now use what we know to make the destination directory not hard coded.
First, edit the first ASP file, simpleupload.asp, that we created. Add to the form an
input field that contains the path.

In this example, we’ll use a "hidden" field without a path value. (This could be a
text field if we wanted user intervention.)

<html>
<head>

<title>EktronFilelO Upload Example</title>
</head>
<body>
<hl>Upload a File with EktronFilelO</hl1>

<form action="performupload.asp”™ method="POST" enctype="multipart/form-data"” name="frmupload">
Please select a file:

<I-- This is the only required field.

It contains the selected file to upload. -->
<input type="File" name="uploadfilephoto" size="20" maxlength="256">

<input type="hidden" name="dest_loc" value="/images">

<input type="submit' name="btnupload” value=" -- Upload -- ">
<input type="'submit" name="btncancel” value="Cancel">

</form>
</body>
</html>

In the ASP examples, the destination field is loaded with the content of the Media
File ‘webroot’ attribute value.

After saving these changes, edit the ASP file. Next, edit the ASP file that activates
the upload, performupload.asp. Change the ServerLocation variable from a hard
coded value to the value of the dest_loc field in the submitted form.

<% response.buffer = false %>
<IDOCTYPE HTML PUBLIC "'-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Page That Activates Upload</title>
</head>
<body bgcolor="Silver'">
<hl>Uploaded File</h1>
<%
Dim BinaryFormData, fileObj, ServerLocation
Dim strReturnString, ErrorCode, UploadFileName

BinaryFormData = Request.BinaryRead(Request.TotalBytes)
set fileObj = CreateObject(“EktronFilelO.EkFile™)

ServerLocation = fileObj.EkFormFieldValue(BinaryFormData, "dest_loc", ErrorCode)

UploadFileName = fileObj.EkFormFieldvValue(BinaryFormData, "uploadfilephoto'™, ErrorCode)
response._write(Uploading the file: " & UploadFileName)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 420

Managing Images

strReturnString = fileObj._EkFileSave(BinaryFormData, "uploadfilephoto™, _
Server .MapPath(ServerLocation), ErrorCode, "makeunique'™)
%>

<% if (0O = ErrorCode) then %>
<h3>Load Succeeded</h3>
<p>The file now exists at: <%=(ServerLocation)%>/<%=(strReturnString)%></p>
<% else %>
<h3>Load Failed with Error = <%=(ErrorCode)%></h3>
<h3>Error Description = <%=(strReturnString)%></h3>
<% end if %>
</body>
</html>

Now, the ASP page that activates the upload dynamically retrieves the destination
from the dest_loc field.

NOTE Regarding the destination location given for the upload: the path specified must
be visible to IIS, either physically or virtually. If it is not, there is no access for
uploads. This is why a path like "http://localhost" does not work.

Conclusion

From here the site must implement other options, such as file type checking,
database updating, and any other required functionality.

ColdFusion

Macromedia/Allaire ColdFusion server has a CFFILE feature that enables you to
save files to the server's file system. See the ColdFusion server documentation
for details on CFFILE.

The ColdFusion database sample supplied with eWebEditPro includes an action
page (medianotification.cfm) and a custom tag file (ewebeditprouploadfile.cfm) to
receive uploaded files. In it, you see the <cffile action=""UPLOAD" ...>
tag.

Security with ColdFusion

The image selection page with the Browse button should validate the file
extension to be uploaded. Security should also be in the ColdFusion page that is
the form's action page. The ColdFusion page should check the file type and only
accept files that are safe, such as image files with extensions: gif, jpg, or png. You
may also want to allow document files, such as, doc and pdf extensions, or media
files, like, wav, ram, and asf (see “Validext Element” on page 432).

You should not allow CFM or HTML files to be uploaded; a malicious person could
gain control over the Web server and cause damage.

For best security, you should only allow authorized users to access a page with
eWebEditPro on it. Most Web servers provide user authentication. Alternately,
you could use FTP, which is protected with a password. If needed, you can
disable Image Upload. The ColdFusion administrator can enable or disable the
CFFILE tag.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 421

Managing Images

Other Web Servers

NOTE Ektron provides a PHP and JSP image upload sample files. See the Developer’s
Page on Ektron’s Web site for details (http://www.ektron.com/
index.cfm?doc_id=654).

Your Web application server must support file upload and provide an ability to
write binary files to the server's file system. Files are uploaded using HTTP in a
Web page form using multipart form data. Check your documentation for
instructions. Third party software may also be available.

Security

The image selection page with the Browse button should validate the file
extension to upload. Security should also be in the dynamic Web page that is the
form's action page.

The page should check the file type and only accept files that are safe, such as
image files with extensions: gif, jpg, or png. You may also want to allow document
files, such as, doc and pdf extensions, or media files, like, wav, ram, and asf (see
“Validext Element” on page 432).

You should not allow dynamic pages and HTML files to be uploaded; a malicious
person could gain control over the Web server and cause damage.

For best security, only allow authorized users to access a page with eWebEditPro
on it. Most Web servers provide user authentication.

Alternatively, you could use FTP, which is protected with a password. Image
upload can be disabled altogether on eWebEditPro, if needed.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 422

http://www.ektron.com/index.cfm?doc_id=654
http://www.ektron.com/index.cfm?doc_id=654

Manipulating Media File Methods and

Properties

The Media File Object methods and properties contain information about the
file, the source location, and the destination.

The object automatically parses the path and uses the values from some of
the properties to determine a transfer destination path and a reference path.
Initial values for several of these parameters are specified in the

mediafi les feature of the configuration data.

For more information, see "Media File Object” on page 19.

Using Local or Given Image Path Resolutions

To learn when to use the local or given image path resolution type, it is
important to understand that image paths are resolved in one of three ways.

® full path
® relative to the host

® relative to the local page location

Below is an example, based on these file locations, of a page whose image
path is resolved in each way.

Page Location: http://www.yourcompany.com/pages/
ewebeditpro5

Image Location: http://www.yourcompany.com/images/gifs
Image File Name: happy.gif

Resolution Image Path in HTML

Type

Full http://www.yourcompany .com/images/gifs/
happy.gif

Host /images/gifs/happy.gif

Local ../ ._./images/gifs/happy.gif

Your choice of a resolution type is determined by the needs of the site and the
publishing process. Use the ResolveMethod property to define a resolution of
the image path. See Also: “Method: resolvePath” on page 91

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 423

Manipulating Media File Methods and Properties

Base URL

Another concept to understand is the Base URL, the location where a page is
being edited.

In the example above, the base URL is http://www.yourcompany .com/
pages/ewebeditpro5. To get from the Base URL location to the image location
relatively, use this syntax: **. ./ . ./images/gifs".

Given Resolution Type

The given resolution type is an abstract version of the local type. It produces a
relative path to images from a directory other than the Base URL.

The given type uses the attribute, src, whose value is the path to the intended
publishing location. The src attribute replaces the Base URL.

When using the given type, set all paths relative to the specified location rather
than the Base URL.

The given type does not change the images’ reference location or upload location.

Below is the above example, based on these file locations again, this time using
the given resolution type.

Page Location: http://www.yourcompany .com/pages/ewebeditpro5
Image Location: http://www.yourcompany.com/images/gifs

Image File Name: happy.-gif

Given src Location: /publish/articles/local/sports

Resolution Image Path in HTML

Type

Full http://www.yourcompany.com/images/gifs/
happy .gif

Host /images/gifs/happy.gif

Given -./../../._./images/gifs/happy.gif

Since the src path may be at a different level or location than the editing location,
all paths stored in the HTML are relative to the given location rather than the
editing location.

As you can see, if you use the given resolution type, the paths in the HTML may
not match the actual paths to the files. If so, the images do not appear in the editor
but do appear when the page is published to the destination location.

Conditions for Using Given Resolution Type

To use the given resolution type, all of the following conditions must be true.

® The images do not move when the HTML source page moves.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 424

Manipulating Media File Methods and Properties

® The HTML source page is published in a different directory level from the
directory in which it is edited.

® |tis acceptable to have images not appear when a page is being edited.

® You know where the HTML source page is published.

If any condition is not true, you should not use the given resolution type. Instead,
use the local or full resolution type.

Programmatically Accessing Media File Properties

The Media File Object provides access to image properties relating to the file and
the upload process. Values set for these properties affect the operation of the
editor.

"Media File Object” on page 19 lists the properties. You can set default values for
most properties in the configuration data.

This section provides the following topics, which explain how to programmatically
access the image properties under various circumstances.

® Accessing the Media File Object

® Using Netscape to Access Image Properties
® The Entry Point for Using External Scripts

® Setting External Page Parameters

® Changing the Transfer Method on the Fly

® Specifying an Image to Insert

® Modifying the Upload Directory

Accessing the Media File Object

You gain access to the media file object properties programmatically via the
MediaFile method in the eWebEditPro control.

Function getValidExtensions(seditorname)

{

var objMedia = top.opener.eWebEditPro. instances[sEditorName].editor.MediaFile();
return(objMedia.getPropertyString(‘'ValidExtensions'));
3

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576; "Media
File Object” on page 19

Using Netscape to Access Image Properties

Within Netscape, the Esker ActiveX plug-in converts the ActiveX control to a plug-
in that Netscape can interpret. As a result, you cannot access Media File Object
image properties directly. Instead, use the getProperty and setProperty
methods listed below.

setProperty(strName, strValue)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 425

Manipulating Media File Methods and Properties

getProperty(strName) as Object
getPropertylnteger(strName) as Integer
getPropertyString(strName) as String
getPropertyBoolean(strName) as Boolean

Below are examples of their usage.

bln =

eWebEditPro. instances[sEditorName].editor.MediaFile().getPropertyBoolean("*HandledInternally™);
bUpload = objMedia.getPropertyBoolean(**AllowUpload™);
SExt = objMedia.getPropertyString(*'ValidExtensions')
iSz =

top.opener.eWebEditPro. instances[sEditorName].editor._MediaFile().getPropertylnteger('MaxFileSizeK");
objMedia.setProperty(‘'SrcFileLocationName', cStr);
eWebEditPro[sEditor].-MediaFile().setProperty(""TransferMethod", "mediamanager.cfm");

Similar property access is done within Java applications. The Java Bean file

provides the functionality for accessing properties.
See Also: "Method: getProperty” on page 71; "Method: setProperty” on page 99

Entry Point for Using External Scripts

The ewebeditpromedia.js file contains the entry point for external scripting of
image selection and upload. Its contents are below.

// Copyright 2000-2001, Ektron, Inc.
// Revision Date: 2001-04-03

// Media Upload Functionality
// Modify this file to customize file upload capability.

function eWebEditProMediaSelection(sEditorName)
{

// The transfer method specifies what to load for the transfer.

var objMedia = eWebEditPro. instances[sEditorName].editor._MediaFile();

var XferMethod = objMedia.getPropertyString(*TransferMethod™);

var sPagelLoad = escape(XferMethod) + "?editorname=" + escape(sEditorName) +
"&upload=" + escape(objMedia.getPropertyBoolean(*"AllowUpload™));

if(xferMethod 1= ")

{
window.open(sPageLoad, "Images®, "scrollbars,resizable,width=640,height=480");
3
else
{

alert("The Transfer Method value is empty. Please specify either "FTP" or a site
address that will handle the file selection.”);
3
3

The page value is specified in XML like this.

<features>

<mediafiles>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 426

Manipulating Media File Methods and Properties

<transport type="samples/asp/database/mediamanager .asp'>

</transport>
</mediafiles>
</features>

You can also specify the transport type by modifying the TransferMethod
property of the Media File Object. The ASP and ColdFusion samples demonstrate
this.

See Also: "Property: TransferMethod” on page 119

Setting External Page Parameters

External pages can pass two parameters to help process the image request.
hd Editor's Name (editorname)

hd Upload Access (upload)
The parameters are passed like this.

mediamanager .cfm?editorname=MyContentl&upload=true

Use the (editorname) parameter to access the editor in scripts. The parameter is
the name of the editor that processed the command to bring up the page. The
name can be anything. In the sample files provided by Ektron, the name is
MyContentl or MyContent2.

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576

The Upload Access (upload) parameter specifies whether the user can upload
image files to the server.

See Also: "Property: allowupload” on page 112

Advanced users can specify their own parameters in the configuration data or set
them in the XferType property of the Media File Object. Custom parameters must
appear at the beginning of the parameter list. The two standard parameters are
appended to the end of the list.

For example, a user wants to pass the domain name as a parameter. Here is how
you would define this in the configuration data.

<transport type=""mymediaupload.cfm?domain=mydomain">

Here is how you would define this in the script.

var objMedia = top.opener.eWebEditPro.instances[sEditorName].editor_MediaFile();
objMedia.XferType = "mymediaupload.cfm?domain=mydomain";

Changing the Transfer Method on the Fly
This example shows how to specify a page while running the script.
function initTransferMethod(sEditor)

{
eWebEditPro[sEditor].MediaFile().setProperty(*TransferMethod","mediamanager.cfm');

}

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 427

Manipulating Media File Methods and Properties

Programmatically Changing from the Default of FTP to the ASP Library

This sample is taken from the edit.asp page. It also exists in the editdesign.asp
and edittemplate.asp. It uses the editor’s interface (fascias) to modify what was in
the configuration.

eWebEditPro.addEventHandler(*'onready”, "initTransferMethod(eWebEditPro.event.srcName,
"mediamanager.asp”, "autoupload.asp)'™);
function initTransferMethod(sEditor, strURL, strAutoURL)
{
iT eWebEditPro.instances[sEditor] !'= null)

{
// The GUI Selection method:

eWebEditPro[sEditor] .MediaFile().setProperty("TransferMethod", strURL +
"?autonav="" + escape(AutoNav) + "&defualtFolderld=" + defaultFolderld);

// The Automatic Accept method:
eWebEditPro. instances[sEditor].editor._MediaFile() -AutomaticUpload() .setProperty
("TransferMethod™, strAutoURL);

eWebEditPro. instances[sEditor].editor._MediaFile() .AutomaticUpload().SetFieldval
ue(""folder_id", defaultFolderld);

Specifying an Image to Insert

This JavaScript example shows how to insert an image that was loaded by an
external mechanism.

Function useSelectedFile(seditorname, sfilename, stitle)
{
//This will bring up the properties dialog and have the user confirm the insert.
top.opener.eWebEditPro. instances[seditorname]. insertMediaFile(sfilename, 0, stitle,
filetype[iloop], 0, 0);
3

The insertMediaFile function is defined in the core JavaScript. (See “Method:
insertMediaFile” on page 74.)

Below is the code in the Core JavaScript.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 428

Manipulating Media File Methods and Properties

The script must inform the Media File Object that the file about to be specified is
remote. To do this, set the IsLocal property to false.

function eWebEditProEditor_insertMediaFile(strSrcFileLocation, bLocalFile,
strFileTitle, strFileType,
nWidth, nHeight)
{

setTimeout("eWebEditPro.instances["" + this.name + "'"].insertMediaFileDeferred("" +
strSrcFileLocation + "', " + bLocalFile + ", "" + strFileTitle + """, """ + strFileType +
", " 4+ nWidth + ", " + nHeight +)", 1);
3

function eWebEditProEditor_insertMediaFileDeferred(strSrcFilelLocation,
bLocalFile, strFileTitle, strFileType, nWidth, nHeight)
{
// Place the file information into the media file object.
// This is used for the insertion of the HTML.
var objMedia = this.editor.MediaFile();

objMedia.setProperty(*lIsLocal’, bLocalFile);
objMedia.setProperty(*'SrcFileLocationName', strSrcFileLocation);
objMedia.setProperty(*FileTitle", strFileTitle);
objMedia.setProperty("'FileType", strFileType);
objMedia.setProperty (' ImageWidth, nWidth);
objMedia.setProperty(*'ImageHeight', nHeight);

this.editor.ExecCommand(*'‘cmdmfuinsert', strSrcFileLocation, bLocalFile);

}

This example also does not specify a width and height. If they are not specified,
the properties dialog box offers to the user the ability to retrieve the file and
determine the dimensions.

Modifying the Upload Directory

Here is an example of changing the upload and reference directory while
executing a script.

For server-side functionality, such as ASP, JSP, ColdFusion, and PHP, the
transfer directory and the reference directory should be set the same. Other
upload functionality, such as FTP, may have these as two different directories.
This sample assumes server-side functionality such as ASP or ColdFusion.

function SetTransferDirectory(seditorname, spathname)
// This sets the transfer directory for the named editor.

top.opener.eWebEditPro. instances[sEditorName].editor._MediaFile().setProperty(""Transfer
Root",spathname);

// Since the upload and Web reference are the same, we should also

// ensure that the reference path is the same.

top.opener.eWebEditPro. instances[sEditorName] .editor_MediaFile() .setProperty(*'WebRoot",
spathname);

}
See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 429

The Mediafiles Feature

This section describes the elements of the mediafi les feature of the
configuration data. For an overview of the media files feature, see "Managing
Images” on page 392.

Mediafiles Element Hierarchy

e =

Interface Features
media files
[[[[|
transport validext mediaconfig maxsizek imageedit
[[[|
autoupload username password port control

[[[|

;) resolve

domain ferdir webroot method

proxy defsource

Server

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 430

The Mediafiles Feature

User Interface Elements in Alphabetical Order

Element Description For more
information, see
autoupload Defines operation of automatic image upload "Autoupload Element”
on page 435
control Sets location of WeblmageFX's configuration "Control Element” on
data file page 445
defsource The default folder that appears when a user "Defsource Element”
browses for a file on a local system on page 443
domain The domain name for the connection "Domain Element” on
page 440
imageedit Defines WeblmageFX "Imageedit element”
on page 445
maxsizek Specifies the maximum file size allowed for "Maxsizek Element” on
upload page 433
mediaconfig Controls the configuration dialogs "Mediaconfig Element”
on page 433
mediafiles Defines the configuration options for the "Mediafiles Element”
mediafiles feature on page 432
password Provides password for gaining access to "Password Element”
server on page 439
port Specifies port to use for file transfers "Port Element” on
page 443
proxyserver Specifies the proxy server to use. "Proxyserver Element”
on page 440
resolvemethod Defines how to resolve file paths "Resolvemethod
Element” on page 444
transport Defines mechanism for selecting and "Transport Element” on
uploading media files page 434
username Provides user name for gaining access to "Username Element”
server on page 439

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 431

The Mediafiles Feature

Element Description For more
information, see
validext Specifies valid extensions allowed for upload "Validext Element” on
page 432
webroot Specifies path to use when referencing "Webroot Element” on
uploaded file page 442
xferdir The destination directory on the server for the "Xferdir Element” on
upload page 441

Mediafiles Element

Description
Defines the configuration options for the mediafi les feature.

Element Hierarchy
<config>
<features>
<mediafiles>

Child Elements

maxsizek, validext, mediaconfig, transport, imageedit

Attributes
Name Attribute Type Default Description
enabled Boolean true Defines whether the feature is enabled. If set to
false, the feature is not available to the user.

Validext Element

Description
Specifies the valid extensions allowed for upload.

The editor removes wildcard characters and spaces from the list. So, for example,
gif, .gif and *.gif are treated the same.

Element Hierarchy
<config>
<features>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 432

The Mediafiles Feature

<mediafiles>
<val idext>

Attributes
Name Attribute Type Default Description
#text String " A comma delimited list that specifies file
extensions allowed for upload.
Example

<validext>qgiTf, jpg,png, jpeg, jpe</val idext>

Maxsizek Element

Description
Specifies the maximum file size in kilobytes allowed for upload.

Element Hierarchy

<config>
<features>
<mediafiles>
<maxsizek>
Attributes
Name Attribute Type Default Description
#text Integer 0 An integer value specifying the maximum number

of kilobytes in the file. If the value is zero, the file
has no size limit.

Mediaconfig Element

Description
Controls the operation of the configuration dialogs.

Element Hierarchy
<config>
<features>
<mediafiles>
<mediaconfig>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 433

The Mediafiles Feature

Attributes
Name Attribute Type Default Description
enabled boolean true Defines whether the feature is enabled. If set to
false,
® |ogin and configuration dialogs are not avail-
able to the user
® the Options button is removed from the image
selection dialog
allowedit boolean true Determines user access to the upload
configuration information. This is all the
connection information, except the login data.
If this is false, the Advanced button is removed
from the login dialog.
Example

<mediaconfig allowedit="true" />

Transport Element

Description
Defines the mechanism used to select and upload media files.

Element Hierarchy
<config>
<features>
<mediafiles>
<transport>

Child Elements

autoupload, username, password, port, domain, xferdir, webroot, resolvemethod,
proxyserver, defsource

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 434

The Mediafiles Feature

Attributes

Name Attribute Type Default Description

Enabled Boolean true If set to “False”, all transport values are blank.

Type String "FTP” Specifies the upload mechanism to use. Values
handled internally are "FTP" and "FILE".
Any other values are passed to the client
application or script. The case is maintained.
See Also: "Example 3: FTP” on page 403

Pasv Boolean True Specifies whether the passive bit is set for FTP.

Allowupload Boolean True Specifies whether a user can upload files. If true,
users should only be allowed to select files already
on the server.
The upload mechanism (such as an external
page) must use this value to prevent users from
uploading files.

Xfer String "binary” Specifies the low level transfer option for FTP.

Autoupload Element

Description

Defines how the automatic image upload mechanism operates. The value of the
type attribute can specify an internal mechanism or a receiving page. (This is
similar to the type attribute of the transport element.) The openaccess
attribute determines whether login values are used for access to the remote
system with the automatic upload mechanism. Finally, the resplvl attribute
determines which automatic upload information to display to the user.

See Also: "Automatic Upload” on page 457

Element Hierarchy
<config>

<features>

<mediafiles>
<transport>

<autoupload>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 435

The Mediafiles Feature

Attributes
Name Attribute Default Description
Type
Type boolean [eWebEditProPath] The internal values are:
/ewepreceive.asp FTP - Use FTP for automatic transfer

NONE - No automatic upload process
A receiving page address - Upload through a
form post to the server. The address is case
sensitive.
By default, the value of the transport
element’s type attribute is used.

enabled boolean true Determines if these settings are active. Set to
true to activate them.

openaccess boolean true False means use the login name, if given, for

the connection in the automatic upload.

True means to not use the login name in the
automatic upload.

This attribute exists because a login may be
needed for the standard upload (older file
selection) but not for the automatic upload. So,
you can specify a password for the older
mechanism and set this to true so that that
password is not used when uploading via ASP.

Exception: An FTP automatic upload does not
read this attribute. Instead, the given login
name and password are always used, if
specified.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 436

The Mediafiles Feature

Name

Attribute
Type

Default

Description

resplvl

integer

This attribute helps a developer assemble the
automatic upload receipt page by displaying
automatic upload information to the user. This
information, which includes error messages,
server response, and process information,
appears in pop-up dialogs.

Information is displayed increasingly, with each
level adding information to the previous level.

Example:

<autoupload
type=""[eWebEditProPath]/
ewepreceive.asp" resplvIl="2" />

Use a numeric value (described below) to
determine the amount of information displayed
to the user.

0 - No detailed information displayed

1 - Detailed error descriptions, if an error
occurs

2 - Level 1 plus server side response
information (see "Example of Automatic
Upload Information Screen (Level 2)” on
page 438.)

3 - Level 2 plus detailed information on each
step of the upload process

Any value higher than 3 acts as level 3.

uploadonsave

boolean

true

If this is false, the automatic upload process
does not occur when a user saves content.

In this case, the cmdmuuploadal l command
must be sent either through the user's toolbar
or through client scripting.

See Also: "emdmfuuploadall Command” on
page 460

showdlg

boolean

true

If true, a status dialog appears while the
upload process occurs.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 437

The Mediafiles Feature

Name

Attribute
Type

Default

Description

showlistonsave

boolean

false

This attribute is only in effect if the
uploadonsave value is true.

If this attribute is set to false, the list of waiting
files does not appear when the content is
saved. Instead, only an upload confirmation
message appears.

If this is true, a list of waiting files appears.

AllowUpload

boolean

true

Offers a complete override of automatic upload
functionality. If this attribute is set to false, the
automatic upload feature is disabled.

If you set this to false, an error is generated if
the user tries to upload. To avoid this, set the
TransferMethod property to None to
disable the upload. See Also: "Property:
TransferMethod” on page 119.

Example of Automatic Upload Information Screen (Level 2)

' Response from the Server

LA |

4

<ML 1D="EktranFilel0"">
< el verzion="1.0"7>
<JPLDAD:
<FILEIMFO ID="1" dizcard="F alze"">
<FSRC:C:AFileDrophimageshart. gif< /FSRC:
<FURL:HTTP://galahad/ewebeditprod uploadd art1]. gif< /FURL >
<FID</FID
<FSIZE: 0 /FSIZE »
<DESCy art.gif< /DESC
<THUMBURL> </THUMBURL:
<THUMBHREF></THUMBHREF=
<FT'PE>image/gif</FTvPE>
<DWIDTH: 0</DWIDTH=
<DHEIGHT>0</DHEIGHT >
<DBORDER:0</DEORDER >
<FRAGMENT »< FRAGMENT >
<FERROR walue="0":</FERROR:
</FILEIMFO>
</UPLOAD:

=101 x|

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 438

The Mediafiles Feature

Username Element

Description

Provides the user name for gaining access to the server. This value can be
encrypted using the Ektron encryption software. Decryption is done using the
licensing key provided to the editor.

Element Hierarchy

<config>
<features>
<mediafiles>
<transport>
<username>
Attributes

Name Attribute Type Default Description

#text String The user name. Since not all external
mechanisms required login access for uploading,
this is optional.

Encrypted Boolean True If "true", the value contained in #text is encrypted
and will be decrypted before it is used.

Password Element

Description

Provides the password for gaining access to the server. This value can be
encrypted using the Ektron encryption software. Decryption is done using the
licensing key provided to the editor.

Element Hierarchy
<config>
<features>
<mediafiles>
<transport>
<password>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 439

The Mediafiles Feature

Attributes
Name Attribute Type Default Description
#text String The password. Since not all external mechanisms
required login access for uploading, this is
optional.
Encrypted Boolean True If "true," the value contained in #text is encrypted

and will be decrypted before it is used.

Proxyserver Element

Description

Specifies the proxy server to use. Normally, this value is for FTP only.

Element Hierarchy

<config>
<features>
<mediafiles>
<transport>
<proxyserver>
Attributes
Name Attribute Type Default Description

#Htext

String

The server name or TCP/IP address. Proxy
servers are not always required.

Domain Element

Description

The domain name for the connection.

Element Hierarchy
<config>

<features>
<mediafiles>
<transport>

<domain>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 440

The Mediafiles Feature

Attributes

Name

Attribute Type

Default

Description

Htext

String

The domain name or TCP/IP address. If blank, the
editor will try to determine the current domain.

External mechanisms do not require a domain
name, but can use one if needed.

Xferdir Element

Description

The destination directory on the server for the upload. When referenced from FTP,
this is a different location than when referenced from the Web. For example, when
referenced from the Web, the path might be . .\dir1\dir2\image.gif or, as
a full path, /topdir/ftp/dirl/dir2. In contrast, when referenced from FTP,
the path might be /dirl/dir2/image.gif.

For ASP, Cold Fusion, JSP, and other external mechanisms, the references are
the same.

If the upload location and the reference location are the same, leave the webroot
element blank. It will inherit the value from xferdir.

See Also: “Property: BaseURL” on page 112

Element Hierarchy
<config>
<features>

<mediafiles>
<transport>

<xferdir>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 441

The Mediafiles Feature

Attributes
Name Attribute Type Default Description
src String The destination directory for uploaded files. The
case is maintained.
svrlocaleref String xferDispName The locale code of the FTP the Root folder’s

display name.

See Also: "Modifying the Language of
eWebEditPro” on page 201

Webroot Element

Description

Specifies the path to use when referencing an uploaded file.

If the server/domain is different from the upload server/domain, this value must
contain the new domain, such as:

http://www.yahoo.com/images

If the webroot has no value, it inherits the value of the xferdir element.

If the Web reference domain is different from the transfer domain, the domain
name must be included in the webroot element.

NOTE If you enter the domain in the webroot element, you must include the protocol. For
example HTTP://www.mydomain.com/public/pages.

See Also: “Property: BaseURL” on page 112

Element Hierarchy
<config>
<features>

<mediafiles>
<transport>

<webroot>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 442

The Mediafiles Feature

Attributes
Name Attribute Type Default Description
src String The reference location for uploaded files. The

case is maintained. If not included or blank, the
value of xferdir is used.

Defsource Element

Description

This element specifies the default folder that appears when a user browses for a
file on a local system. The path given can be anywhere on the local drive or a
network server.

Normally, this value is used by FTP upload to help select a local file. An external
selection mechanism can also use this value to specify where to retrieve a list of
files.

See Also: “Setting up an Image Repository” on page 447

Element Hierarchy

<config>
<features>
<mediafiles>
<transport>
<defsource>
Attributes
Name Attribute Type Default Description
src String The location to start browsing for files to upload.
The case is maintained.

Port Element

Description
Specifies which port to use for any file transfers. This value is only required if a
non-standard port is used. If the value is zero or is not included, the editor
determines the correct port to use.

Element Hierarchy
<config>
<features>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 443

The Mediafiles Feature

<mediafiles>

<transport>
<port>
Attributes
Name Attribute Type Default Description
#text String 0 The port to use for file transfers. If not given or set

to zero, the editor determines which port to use
based on the selected protocol.

Resolvemethod Element

Description
Defines how to resolve file paths. Paths are resolved relative to the base URL
(that is, the current page location).
Method Resolves Example
FULL All path names to include the protocol, domain, and full http://www.yahoo.com/

path. This method ensures that paths are correct
regardless of where they are referenced from.

pages/images/me.gif

HOST Relative to the root of the host server. This method lets you /pages/images/me.gif
move directory structures to a publishing server without
having to change any paths.

LOCAL Relative to the current location. This method lets you move ./images/me.gif
directory structures up and down within file systems as well
as to other servers.

GIVEN To a given future location. This method resolves the paths . ./publish/images/
to the location where the files will be moved. The resolved me.gif

path is similar to local.

Element Hierarchy

<config>
<features>
<mediafiles>
<transport>
<resolvemethod>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 444

The Mediafiles Feature

Attributes

Name Attribute Type Default Description

Value String LOCAL The resolve method to use when resolving paths.
The valid values are FULL, HOST, LOCAL, and
GIVEN.

Src The path to use for the GIVEN resolution. Case is
maintained.

Allowoverride Boolean False If set to “True”, the user can disable the path
resolution mechanism. If disabled, paths entered
by the user are not modified.

Resolve Boolean True If “True”, the path resolution mechanism is
enabled and will resolve paths according to the
specified mechanism. If disabled, paths entered
by the user are not modified.

Imageedit element

Description
Defines WeblmageFX. For more information, see "WeblmageFX” on page 510.

Element Hierarchy
<config>
<features>
<mediafiles>
<imageedit>

Child Elements

control

Control Element

Description
Sets the location of WeblmageFX’s configuration data file.

Element Hierarchy
<config>
<features>
<mediafiles>
<imageedit>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 445

The Mediafiles Feature

<control>
Attributes
Name Attribute Default Description
Type
src String [WebImageFXPath]/ | The location of WeblmageFX’s configuration data
ImageEditConfig.x | file.
ml

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 446

Setting up an Image Repository

eWebEditPro lets you set up an image repository folder on an intranet.
Keeping all images in a central location makes it easy for users to select an
image and insert it into their Web content.

The Image Repository Folder

You should create an image repository folder on a server that is accessible to
client PCs, either through a UNC path or a mapped drive. (You can test this
through Windows Explorer).

Next, specify the pathway to that folder in the xferdir element of the
transport elementin the mediafiles feature. You must enter the full path
to the folder -- relative paths are not allowed. Below are two examples:

<xferdir src="\\imageserver\GIFs"/>
<xferdir src="M:\images\GIFS'"/>
Also, set the transport element’s type attribute to “file”.

<transport enabled="true" type="file" xfer="binary" pasv="true">

WARNING! You can only use the FILE transfer type in an Intranet setting.

Finally, you can set up a default repository folder accessible through your
Intranet. If you do, your repository appears as the default folder when the
user clicks Select New File from the Picture Properties dialog box (illustrated
below).

File Selection

[Select Mew File ﬂ

— | anank — Previettt — —
To do this, use the defsource element located below the transport
element in the mediafiles feature. Inthe defsource element's src
attribute, assign a local or UNC address to the src attribute. For example:

<defsource src="\\filesrvr\images\gifs" />

xferdir, defsource and type are the only elements under transport
that you need to define. You do not need to define any other elements, such
as webroot, password, domain, or resolvemethod.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 447

Setting up an Image Repository

Inserting an Image into a Web Page

To insert an image, the user clicks the insert picture button (). Next, the Picture
Properties dialog box appears.

Picture Properties

— File Selection kK I
I Cancel |

Images: j Select Hew File | Dptions |

— Layout — Preview

Width: IEI

Height: IU—

Border Thickness: IEI

Alignment: Im

FBeset |

— Spacing

Haorizontal: IU—

Yertical: IU—

Title: I

Here, the user clicks Select New File and navigates to the folder containing the
image, using the standard Windows file selection dialog box.

[7] x]
Look in: | = Local Disk [C) = & ®B ek E-
|_1ADOBELPP, 1 10nEdit_Manual v
-1 CFUSION CaMssaL? [0 wbroker
I_1 Documents and Settings g My Music [Cwindows Update Se
I EktionDey [Z1 New Folder CWwANNT
I ewebeditpro - Program Files
|1 FOUND.DOO [CIPSFOMTS
I_1 framemaker test [_1 Tech Pubs dept
| Inetpub [Temp
-1 Install = unzipped

< |

2l

File: name: I j Open I

Files of tupe: | &1l File Types =] Cancel |
[Open as read-only

If you set up a default directory (as explained above) that directory appears first.
The user can select an image from this directory or browse to a different directory.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 448

Setting up an Image Repository

If a user selects an image from the image repository folder, eWebEditPro
references the image in the Web document.

If a user selects an image that is not in the image repository folder, eWebEditPro
copies the image to that folder. The Web document references the image from the
folder. From then on, all users with access to the folder can insert the image.

NOTE You cannot copy a file to the image repository folder if a file of the same name
already resides there.

When the user inserts an image, the full path to the image is saved with the Web
document. For example, if you insert an image named button.gif into your Web
document, the HTML code for that line might look like this.

<src="file:///M:/images/GIFS/button.gif"/>

No other resolution options are available to the “file” upload type.

Example

Below is a full example of the mediafi les section that defines the file upload
method. The transport element defines the upload method. All other sections are
for the general feature definition.

<mediafiles>
<transport type="FILE">
<xferdir src="M:\images\GIFS"/>
<defsource src="\\filesrvr\images\gifs" />
</transport>
<command name="‘cmdmfumedia" enabled=""true'>
<image key="picture'/>
<caption localeRef="btnCapPic'/>
<tooltiptext localeRef="btnTipPic"/>
</command>
<maxsizek>0</maxsizek>
<validext>gif, jpg,png, jpeg,jif</validext>
<mediaconfig enabled="true" allowedit=""true"/>
</mediafiles>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 449

Dynamically Selecting Upload
Destinations

When an image file is uploaded, it is moved to an upload directory defined in
the configuration data. Often, you need to change the directory, depending on
user interaction or other changing conditions. You can use client scripting to

modify the upload directory at almost any time.

This section describes how to use scripting to change the image file upload
location. The examples in this section illustrate how to change the image
upload directory.

In the first example, an external upload mechanism is assigned. In Web
browsers, this is an external page that contains the functionality for uploading
files. The ASP sample installed with eWebEditPro is used here.

In the second example, the upload directory is assigned and modified. The
user is presented with three choices of a directory and can change it at any
time. (Three choices is not a limit of the editor -- it is just a number used in
this example.) The image files are uploaded, and the path information is
stored in the database. The user can then select and view the files anywhere
in the editor.

NOTE The upload location, as well as other settings, can only be changed during or
after the “ready” notification. This notification generates a call to the
eWebEditProReady function, which the site administrator creates. If changes
to the upload location are made before this notification, the settings are
replaced by the values in the configuration data.

Setting Up Image Upload

The uploading of image files and other files is controlled through the
configuration data. This data includes an upload mechanism, an upload
destination directory, referencing information, and other information.

Here is an example configuration for the internal FTP image upload
mechanism.

<mediafiles>

<transport type="FTP'>
<domain>ftp.mydomain.com</domain>
<xferdir src="/pages/[eWebEditProPath]/upload"/>
<webroot src="http://www.mydomain.com/[eWebEditProPath]/
upload"/>

</transport>

<command name="‘cmdmfumedia” style="icon">
<image key="Picture"/>
<caption localeRef="btnTxtPic">Picture</caption>
<toolTipText localeRef="btnPic">Insert Picture</toolTipText>

</command>

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 450

Dynamically Selecting Upload Destinations

<validext>gif, jpg,png,jpeg,jif</validext>
</mediafiles>

Media File Object

The Media File Object is the interface to a selected file's internet properties.
Effective use of the Media File Object is the key to manipulating the upload
mechanism. The object contains information on uploading, referencing, and
displaying the file.

To retrieve the interface to the object, using the MediaFi le method.

var objMedia =
eWebEditPro. instances[sEditorName].editor _MediaFile();

or

var objMedia =
eWebEditPro. instances[sEditorName].editor._MediaFile();

Use these Media File Object methods to affect upload information.

getProperty(PropertyName as string, vData as Variant)
getPropertyString(PropertyName as string) as Variant

Use these properties to affect the upload mechanism, location, and reference.

TransferMethod as String — Method of Upload
DefDestinationDir as String — Upload path location
(TransferRoot as String — alias for DefDestinationDir)
WebRoot as String — Path reference from a Web page

WebRoot only inherits the value of DefDestinationDir when itis not assigned
a value anywhere, including in the configuration data. As a result, ASP, Cold
Fusion, and other scripting that use the same domain and directory structure for
transfers and referencing can work with the single DefDestinationDir
property.

See Also: "Media File Object” on page 19

Modifying the Upload Location

Configuration Data

Any customization should begin with the configuration data, since all default
settings are defined there. In this case, the mediafi les section is the focus. The
following example explains how to address these issues.

® Since the example changes the upload mechanism programmatically, it
defaults to the internal FTP setting.

® The default upload destination directory is defined in the configuration file.

® Since the Web reference path is the same as the destination, the example
does not include a webroot element. As a result, the WebRoot property
inherits the value defined in the xFerdir element and any value assigned to
the DefDestinationDir property.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 451

Dynamically Selecting Upload Destinations

Here is the mediafi les section of the configuration file for this example.
<mediafiles>
<transport type="FTP">
<domain></domain> <!-- empty means use current -->
<xferdir src="[eWebEditProPath]/upload"/>
<resolvemethod value="local"/>
</transport>
<command name="‘cmdmfumedia”™ style="icon">
<image key="Picture"/>
<caption localeRef="btnTxtPic">Picture</caption>
<toolTipText localeRef="btnPic">Insert Picture</toolTipText>
</command>
<validext>qgif, jpg,png, jpeg,jif</validext>
</mediafiles>

Sample HTML Page

Here is sample HTML source page to start with. It is a simple page that contains
the eWebEditPro editor, a list selection item, and a text item to display the current
upload path. The path manipulation functionality is added later.
<html>
<html>
<head>
<title>User Select Upload Location</title>
<script language="JavaScriptl.2" src="ewebeditpro.js'></script>
</head>
<body>
<form method="post" name="selectpath'>
<hl>User Select Upload Location</hl>
<script language="JavaScriptl.2">
var g_strUserEditorName = "MyContentl";

document.write("<input type=hidden name="

+ g_strUserEditorName +
value="This is initial content.">%);

if (typeof eWebEditPro == "object')
{
eWebEditPro.create(g_strUserEditorName, *"100%, 400);
}
</script>
</form>

<p>Current Upload Location:

<select name="LocationSel" title="Current Upload Location"
OnChange="UseSelectedLocation(LocationSel.selectedIndex)">
<option>Configured Location<option>Work Location

<option>Publish Location</select> :

<input name="CurUploadLocation" style="text" value="Upload Destination"
maxlength="256" size="80"></p>

</body>

</html>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 452

Dynamically Selecting Upload Destinations

Notice a call to the UseSelectedLocation function -- this is explained in "User
Selection — Changing the Upload Location” on page 453.

Initialization

When the page loads, an external upload mechanism is assigned. The code also
reflects to the user the current upload path from the Media File Object.

<script language="JavaScriptl.2">

var g_strConfiguredPath = "";
function eWebEditProReady(sEditorName)
{

var objMedia = eWebEditPro.instances[sEditorName].editor._MediaFile();
objMedia.setProperty(“'TransferMethod", "samples/asp/database/mediamanager.asp™);
g_strConfiguredPath = objMedia.getPropertyString(‘'DefDestinationDir');
document.selectpath.CurUploadLocation.value = g_strConfiguredPath;

}

</script>

The current path (the default path defined in the configuration file) is stored for
later use. In our example, this allows the user to re-select it.

Note on the Missing eWebEditProReady

To the core JavaScript files installed with eWebEditPro, eWebEditProReady is
a reserved function name. This function does not exist in the core JavaScript files.
Instead, a developer must define the function either in his/her own JavaScript files
or in the HTML file.

The function can be defined in any file brought in by the page. In the example
below, this function is defined in the HTML file.

When the editor control sends the "ready" notification, the core JavaScript checks
to see if eWebEditProReady is defined. If it is, the core JavaScript calls the
function to notify the scripts that the editor is ready.

User Selection — Changing the Upload Location

In this example, the user can select one of three image upload locations. Here is
the JavaScript to handle the selection:

function AssignUploadLocation(sEditorName, sLocation)

{
var objMedia = eWebEditPro.instances[sEditorName].editor_MediaFile();
objMedia.setProperty(‘'DefDestinationDir", sLocation);
document.selectpath.CurUploadLocation.value =
objMedia.getPropertyString(‘'DefDestinationDir™);

3

function UseSelectedLocation(ilndex)

{
var UploadLoc = new Array(g_strConfiguredPath, eWebEditProPath + "samples/common/database",

"/publish/images™);

AssignUploadLocation(g_strUserEditorName, UploadLoc[ilndex]);

3

The UserSelectedLocation function uses the index passed down from the
LocationSelection item to specify the user's selection.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 453

Dynamically Selecting Upload Destinations

UserSelectedLocation then sends the path associated with that selection to
the AssignUploadLocation function.

The important function to examine is AssignUploadLocation., which
illustrates how to set the destination directory for any uploads. This function
receives the location and sets it into the Media File Object.

Full Example
Here is the full HTML page that shows how to change the upload location.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 454

Dynamically Selecting Upload Destinations

<html>
<head>
<title>User Select Upload Location</title>
<script language=""JavaScriptl.2" src="ewebeditpro.js'></script>

</head>

<body>

<script language="JavaScriptl.2">

var g_strConfiguredPath = ***;

function eWebEditProReady(sEditorName)
{

var objMedia = eWebEditPro. instances[sEditorName].editor._MediaFile();

objMedia.setProperty(‘'TransferMethod",
"samples/asp/database/mediamanager.asp™);

g_strConfiguredPath =
objMedia.getPropertyString(‘'DefDestinationDir');

document.selectpath.CurUploadLocation.value = g_strConfiguredPath;

}
function AssignUploadLocation(sEditorName, sLocation)
{
var objMedia = eWebEditPro.instances[sEditorName].editor._MediaFile();
objMedia.setProperty(‘'DefDestinationDir", sLocation);
document.selectpath.CurUploadLocation.value =
objMedia.getPropertyString(‘'DefDestinationDir™);
3
function UseSelectedLocation(ilndex)
{
var UploadLoc = new Array(g_strConfiguredPath,
eWebEditProPath + "samples/common/database’,
"/publish/images™);
AssignUploadLocation(g_strUserEditorName,
UploadLoc[ilIndex]);
}
</script>

<form method="post" name="'selectpath'>

<hl>User Select Upload Location</hl>

<script language="JavaScriptl.2">

var g_strUserEditorName = "MyContentl";

document.write("<input type=hidden name=
" value="This is initial content.">");

+ g_strUserEditorName +

if (typeof eWebEditPro == "object™)
{
eWebEditPro.create(g_strUserEditorName, *100%, 400);
3
</script>

<p>Current Upload Location:

<select name="LocationSel" title="Current Upload Location"
OnChange=""UseSelectedLocation(LocationSel .selectedIndex)">
<option>Configured Location<option>Work Location
<option>Publish Location</select> :

<input name="CurUploadLocation" style="text" value="Upload Destination"
maxlength="256" size="80"></p>

</form>

</body>

</html>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 455

Dynamically Selecting Upload Destinations

In the above example, the two important script functions are
eWebEditProReady and AssignUploadLocation. These functions show how
to access and modify the upload method and location.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 456

Automatic Upload

NOTE The Automatic Upload feature is not supported in Microsoft IE4 or earlier
browsers, nor is it supported for Microsoft Word 97.

There are two kinds of Automatic Upload:

® content containing local files and images linked to an external

application, such as MS Word. When the user saves the content, the files
and images are converted to HTML. This is described in this chapter.

® content is uploaded directly to the server without leaving the editor. This
is described in "Content Upload” on page 500.

—
I ane
Document File

Database/File
System

— Client o
—/ Application ¢SENerSCFImInQ

Automatic Upload of Files and Images from an External
Application

This type of automatic upload occurs when a user inserts content into
eWebEditPro that contains local files and images that are linked to an
external application, such as MS Word. When the user saves the content, the
files and images are converted to HTML.

Next, the user confirms the upload to the server through a dialog box that lets
him select which files to upload and which to leave as local until the content is
completed. Finally, the editor uploads the files to the server, which stores
them in a file system. After a file is uploaded to the server, its path changes
from local to the destination defined in the xferdir src attribute of the
configuration data.

Automatic upload is complicated because physical drives need conversion to
URL values, and files may change their names when uploaded. Also, issues
of extended file processing and how to represent an uploaded file in the
content must be resolved.

The Automatic Upload feature sets up two-way communication between
client and server. The responding XML data provides the information needed
to resolve most issues. As a result, the client editor can know what happens
to the uploaded file and how to use the file.

This kind of Automatic Upload includes these capabilities:

® Simple Path Resolution

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 457

Automatic Upload

To provide these capabilities, Automatic Upload uses previously available

Specific File Types

Appropriate Content Modification

Client Notification

Resolve File Processing Changes

Upload Status (server side of status information)

Security

mechanisms. For example, the client side functionality uses the available API
within Microsoft's Wininet DLL.

Also, since Automatic Upload is an extension of the image processing feature,

you can use the configuration data described in "The Mediafiles Feature” on

page 430 to determine many aspects of the feature. For example, you can use
the configuration data to determine the

This feature is explained more fully in the following topics.

Upload mechanism
Server connection and active page
Security and login

Upload limits

Installing the Automatic Upload Feature
Modules that Enable Automatic Upload
cmdmfuuploadall Command

Overview of the Automatic Upload Process
Information Components

eWebEditPro Fields Sent with Post
Creating an Automatic File Receive Script
Steps to Receiving a File

Data Island

EWepAutoSvr Object API

EkFileObject API

XML Element Descriptions

ColdFusion example

ASP example

AutomaticUpload Object

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

458

Automatic Upload

Installing the Automatic Upload Feature

During the server installation of eWebEditPro, the following question appears:

Do you want to register the Ektron automatic file upload component? If
not, you will need to use another mechanism to upload images.

You must click Yes to use the features described in this section.

Modules that Enable Automatic Upload

The feature contains two files to process the file transfer.

File Resides Description
on the
eWepMediaTransfer.dll client The module that the editor uses to initiate a transfer.
This object assembles form data and posts it to the
server. The accepting page written to accept files is also
specified on the client.
eWepAutoSvr.dll server ASP module that extracts and saves the uploaded file.

Its design is primarily for ASP.

If a server-side script supports COM on a PC, you can
use this object to help accept the file. The server script
must allow the retrieval of the raw posted form data for
this object to work.

The feature also includes ewepreceive.asp, a default ASP script that uses the
eWepAutoSvr.dll module and controls the upload if no other receiving page is
available.

For instructions on how to write a receiving script, see "Creating an Automatic File
Receive Script” on page 466.

An Example of Customizing Automatic Upload

The ASP database sample illustrates how to customize the Automatic Upload
mechanism to update a database. Specifically

® the mediaautoreceive.asp file receives the file and updates the database

® the edit.asp file programmatically changes the editor's upload receiving page
when a "ready" notification is received

To try out the ASP database sample, follow this path, beginning with the Windows
Start button:

Start > Programs > Ektron > eWebEditPro3 > Samples > ASP > Database >
ASP Database Sample

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 459

Automatic Upload

The mediaautoreceive.asp and edit.asp files are installed to eWebEditPro
path/samples/asp/database.

cmdmfuuploadall Command

The cmdmfuuploadall command lets the user manually perform the upload
process. The command displays the Files Waiting for Upload dialog box, which
prompts the user to upload files.

This command is not on a standard toolbar in the default configuration, but can be
added to a toolbar when customization is enabled.

See Also: "Adding a Toolbar Button” on page 173

The Automatic Upload feature also uses the transport element (see "Transport
Element” on page 434) and the AutomaticUpload Object (see "Automatic Upload
Object” on page 499).

Overview of the Automatic Upload Process

When content containing files and links to files is copied from an application (such
as MS Word) to the editor, the user may want to upload the files and update the
paths before saving the content. The Automatic Upload mechanism provides this
capability.

If the client knows the correct server page and the server contains that page, the
user needs to know nothing about the upload process, except maybe his or her
login. The upload happens automatically.

The Upload Process

Automatic Upload allows an application, such as Ektron eWebEditPro or
CMS300, to easily upload files to the server. The process starts on the client side
application.

1. One of these events initiates the upload process:
® The user saves the editor content

® The cmdmfuuploadall command is available as a toolbar button, and the user
presses the button
See Also: "cmdmfuuploadall Command” on page 460

2. The content is scanned, and files that meet these criteria are given to the
eWepMediaTransfer module for uploading.

® The file is specified in the body
® The file path uses an href or src attribute

® The file exists on the local system
See Also: "Modules that Enable Automatic Upload” on page 459

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 460

Automatic Upload

Client

Aaplication ek Mz dia
) I Tranzer
Local File [T M=) Modul e
eWiebhE ditP ra)

3. The eWepMediaTransfer module posts the file information, and any other
information given to it by the client, to the server as multipart form data. A
server script receives the posted information.

The form post consists of a posted form with a file field. Form data is
assembled on the client side. The form contains information fields and a file
field. This is the same format found in any form being posted from a browser.

See Also: "eWebEditPro Fields Sent with Post” on page 463

. Server
e
Mo [CFiaspP =Py
etc.)

4. The server script extracts the file and information about it, and updates the
content management system with this information. This involves saving the
file and updating any databases or files.

Other file processing can also be done, such as creating a thumbnail or
specifying an icon to represent the uploaded file. An ASP script is provided in
the eWepAutoSvr module to help this process.

Serner I

Re ceiver Script ' wanpn'géﬁ;:fw

C ISP SR/ : i Local File
ete.) | [(Dptional)

See Also: "Modules that Enable Automatic Upload” on page 459; "Assembling the
Response XML Data Island” on page 474

5. When the file processing is complete, the server assembles XML response
data and sends it to the client. The eWepAutoSuvr file is provided for ASP or
other scripts that support COM to help this process.

] S rver
ekMedia Receiver Script | XL
Transfer - (CFmspUsPr [Rezp.
M odule et

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 461

Automatic Upload

6. When the XML data is received, the eWepMediaTransfer module parses it
and makes it available to the client application. The data includes transfer
status, processing information, and other information. Also, the client can
extract the response data for its own parsing. The client uses the information
to determine how to represent the uploaded file.

Information Components

The following information components are used to maximize the processing of file
data within edited content.

Component | Description

Final full file The server decides where the file is finally placed and

URL what its name is. This is also the resulting file if the
uploaded file is converted to another format. For
example, a Word document is converted to a PDF file.
This must be the full reference used in a browser.

Resulting A title is sent with the upload, but the server may want to

Title change it. An example is “translations”.

Referenced May have been changed. For example, a Word

File Type document may be converted to a PDF file.

Thumbnail A URL to a thumbnail created for the file.

File

Thumbnail The URL link for when the thumbnail is clicked.

Link

Error This can include a number, a description, and/or a

Description suggested course of action.

Discard If a file can be uploaded but the user should not

Reference reference it, this instructs the editor to omit the file's
reference from the content.

Concepts

These are general concepts behind this data.

® The data can include more than one file. While the client may not support
sending more than one file in a transmission, the server side must be ready
for this extension.

® |f athumbnail is specified, it is used in place of the image reference.

® |f a thumbnail is specified but no href value is assigned, the image URL is
used as the link for the thumbnail image.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 462

Automatic Upload

@ |f this information is not sent to the client, the client editor “guesses” where
the file ended up from information contained in the configuration data.

eWebEditPro Fields Sent with Post
The eWebEditPro client sends one of these sets of fields with a file post.
® |mage Upload Fields

® Custom Field Set

Image Upload Fields

These fields send information about an image file. They are also sent with the
ASP sample provided with eWebEditPro. This set of fields provides compatibility
with the ASP database sample and lets the server side receive a large amount of
data about the file.

Much of the sent data originates in eWebEditPro’s configuration data stream. The
server-side component can extract what it needs and ignore the other fields.

Entry Description

actiontyp The action type. (Note that the final ‘e’ is missing.)

This entry’s value is a command to the server. It is
normally uploadfi le for the file upload process.

See Also: "uploadfile” on page 468

editor_media_path The requested upload destination. For example,
http://www.mysite.com/uploads.

Normally, this value is equal to the web_media_path
value. It is given here for if it is different for some reason.

The server can ignore this and place the file where it
wants. If the server places the file elsewhere, the client
should receive the full XML response so that it knows
where the file was placed.

ekclientname The name of the client application. It is not necessarily
the application name, although you can use the
application name.

This is usually the eWepMediaTransfer value. Error
check this.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 463

Automatic Upload

Entry Description

ekclientneeds The level of response the client requests. An application
may want to receive only the file name, all the data, or
nothing. The values are:

fullxml - full XML data about the upload
filename - just the file name, no XML data
none - no data returned

The default is "filename.” This chapter describes how to
generate code for the fullxml value.

ekclientversion The version of the upload module on the client side.
This allows the server side to determine what the client
supports. The version must be 1.0 or higher to support
the upload mechanism. Error check this.

If no version is sent, this field returns the file name only.
Backward compatibility is always assumed, so if the
client version is higher than the server component, the
server component uses the highest version format that it
supports.

extension_id The file extension given as an ID. This can be used to
categorize the file in a database.

The ASP sample processes this value into an ID
number. The client editor will echo this operation.

Most likely, the server side wants to determine the ID.

extensions The list of valid extensions contained in the
configuration XML data. An example value is:
"gif,jpg,png.jpeg.jif”

The receiving client should examine these extensions to
ensure the file being uploaded is acceptable. If the file
extension is not acceptable, set the 'discard’ attribute of
the 'FILEINFO' element to true.

See Also: "discard” on page 470

filename The name of the local file. Normally, this is a full local
path that does not match a file location on the server. An
example is: C:\Inetpub\wwwroot\kewl .gif

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 464

Automatic Upload

Entry Description

file_size The file size in bytes. This is meant for an early
determination of validity before processing is done.

Once a file is uploaded and saved, the EWepAutoSvr
module determines the size from the file. This second
value is used in the response.

See Also: "Assembling the Response XML Data Island”
on page 474

file_title The file’s title or description. This value is used in the
alt and title attributes of an image file. The server
can override this value using the Description method.

See Also: "Description” on page 482

file_type The type of file. This follows the HTML convention
where a GIF file is an "image/gif" type.

height The requested height to show the image. The server
can override this using the FileDimensions method.

See Also: "FileDimensions” on page 482

img_date The date of the file. The format is "11/30/2002 10:33:51
PM".

This is not the date of the upload. The upload date is
sent with the ASP sample, but the file date is more
useful, since the upload date can be determined on the

server side.
uploadfilephoto The file selection field.
web_media_path The expected reference location, such as http://

www.mysite.com/uploads.

This location is assumed if the server does not respond
with a reference location value. The server uses the
FileUrl method to specify where the location can be
referenced.

The XML response element that specifies this is FURL.

See Also: "FURL” on page 492

width The requested width to show the image. The server can
override this using the FileDimensions method.

See Also: "FileDimensions” on page 482

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 465

Automatic Upload

Custom Field Set

A client application, such as Ektron CMS300, can add fields to the posted form.
As you extend the receipt script functionality, you can look for any custom fields
that you know about and act on their data.

Example HTML Form

The following HTML example is provided to help you understand how Automatic
Upload’s posted form fields might look like if defined them as HTML source. An
HTML file is not used for the automatic upload, but the example illustrates the
fields that a receiving script would expect.

<html>
<I-- This is never used for an automatic upload, but from what the server sees
it is as if a page like this were being posted up to the server. -->

<head>

<title>EktronFilelO Upload Example</title>

</head>

<body>

<hl>Upload a File Using eWepAutoSvr</hl>

<form action="/ewebeditpro5/ewepreceive.asp’” method="POST" enctype="multipart/form-data"
name=""frmupload">

<h3>These are the Fields Submitted:</h3>

Select File: <input type="File" name="uploadfilephoto"” size="20" maxlength="256"/>

Client Name: <input type="Text" name="ekclientname" value="ekmediatransfer'/>

Client Version: <input type="Text" name="ekclientversion" value="1.0"/>

Response Need: <input type="Text' name="ekclientneeds" value="fullxml'/>

Action Type: <input type="Text" name="actiontyp" value="uploadfile"/>

Image Date: <input type="Text' name="img_date" value="1/10/2003 10:33:51 PM"/>

Extension ID: <input type="Text" name="extension_id" value="0"/>

File Type: <input type="Text" name="file_type" value="image'/>

Upload Location: <input type="Text" name="editor_media_path" value="/ewebeditpro5/upload'/>

URL to Use: <input type="Text" name="web_media_path" value="/ewebeditpro5/upload"/>

Valid Exts.: <input type="Text" name="extensions' value="gif, jpg,png,jpeg"”/>

File Size: <input type="Text" name="file_size" value="4096"/>

Width: <input type="Text" name="width" value='"800"/>

Height: <input type="Text" name="height" value="600"/>

File Title: <input type="Text" name="file_title" value="This is a picture of me."/>

<input type="'submit" name="btnupload"” value="Upload File"/>
</form>

</body>
</html>

Creating an Automatic File Receive Script
The Automatic Upload’s server-side scripts are designed to
® save the uploaded file

® return to the client XML data about the upload

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 466

Automatic Upload

This section describes how to create a server-side script or object to receive a file
from the Automatic Upload mechanism. You can use these instructions to create
any server-side script, from ColdFusion to JSP to .Net. Sample scripts are not
provided to explain how to perform the required operations, although an ASP
sample appears in "ASP Example” on page 496.

What This Section Covers

® Description of data received by the server
* How to receive a file
® Samples in ASP with eWepAutoSvr

® Description of data sent back to the client

What This Section Does Not Cover

® How to perform CMS operations, such as updating a database

® Specific server-side scripting language or object language

The Automatic Upload Server-Side Receiving Module

The automatic upload server-side receiving module (EWepAutoSvr on IIS
systems) extracts the file and information about the file, and updates the content
management system with this information. This involves saving the file and
updating any databases or files.

The module consists of information components and a data island, which is
implemented as a repository for the return data. For more information about the
information components and data island, see "Information Components” on
page 462 and "Data Island” on page 471.

Other file processing can also be done, such as creating a thumbnail or specifying
an icon to represent the uploaded file. The ASP script is provided in the
eWepAutoSvr module to help this process.

When the file processing is complete, the server assembles XML response data
and transmits it to the client. The eWepAutoSvr file is provided for ASP or other
scripts that support COM to help this process. For more information on this
procedure, see "Steps to Receiving a File” on page 467.

Steps to Receiving a File

NOTE

To learn about receiving uploaded content, see”Steps to Receiving Content” on
page 476.

There are six steps to receiving a file:
1. Actonthe Command

2. Extract the File Information

3. Determine the File Destination

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 467

Automatic Upload

4. Extract the File Binary and Save
5. Build the Return XML Data
6. Send it Along

Step 1 — Act on the Command

The command is retrieved from the actiontyp field in the posted form. The
client object sends one of two known commands: uploadcontent and uploadfile.

uploadcontent

When the server receives this value, the posted form contains the document
content. The server then assembles a response that is formatted in HTML, which
is displayed in the editor. For more information, see "Content Upload” on

page 500.

uploadfile

When the server receives this value, the posted form contains a file. The text
returned is described in the rest of this section.

Unknown Commands

There is no mechanism for allowing the client to send non-standard commands to
the server.

Step 2 — Extract the File Information

Information about the upload is broken down and stored within every field except
the “uploadfilephoto” field, which contains the image.

You should extract this information before determining how to proceed. Error
checking and the expected client response level that you specify here determine
how the script should process and respond.

The other information is used for error checking, database operations, etc.
Because processing this information is specific to each content management
system, it is not covered here.

Step 3 — Determine the File Destination

From the file name retrieved in Step 2, determine if a file by that name already
exists. If overwriting files is not allowed, the script must make the file name
unique.

The script can use the requested logical upload destination or determine its own.
The requested destination is within the editor_media_path field. Normally, this
value is defined in the configuration file, but the server can determine another
location for the file.

No matter what the location, its logical location is returned in the XML data. You
should map the logical location to a physical location for saving the file on the
server’s hard drive.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 468

Automatic Upload

Step 4 — Extract the File Binary and Save

The binary of the file exists in the uploadfi lephoto file selection field. Extract
the binary data from this field and save it to the location and name determined in
Step 3.

NoOTE The eWepAutoSvr object is mainly for ASP. Other scripting languages that
support COM and can extract the submitted form as binary data can also use it.

Step 5 — Build the Return XML Data

NoTE The XML response is only required when a file is uploaded to the server. This
should not be the response for a content upload.

This is the most complex section of the process. You must follow the XML format.
Generally, you need to create one tag per piece of data.

Except for the xml declaration tag, all tags are upper case. Since XML is case
sensitive, this convention helps distinguish the upload information tags from other
XML tags in returned content.

Upload data items are assembled as content within the tags and not attributes.
For example: <FTYPE>image/gif</FTYPE>.

For a full list of tags used in the returned XML data, see "XML Element
Descriptions” on page 488.

Start with the XML Root Tag

XML data must contain a root tag. For the automatic upload feature, the root tag is
the <UPLOAD> tag.

XML also needs the XML declaration. Since we want to support data islands, our
declaration must use the HTML XML data tag.

So, here is the checklist for the root setup of the XML:
® HTML XML data tag (<XML>)
® XML declaration (<?xml version="1.0"?>)

® The ‘UPLOAD’ root tag (</UPLOAD>)

The root of the returned XML data must always be this:

<XML ID=EktronFilel0O>
<?xml version="1.0"?>
<UPLOAD>

</UPLOAD>
</XML>

The upload data goes between the <UPLOAD> tags.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 469

Automatic Upload

Add the File Information Tag

Information for each uploaded file is contained within the <FILEINFO> tag, which
has two attributes.

FILEINFO Description
Attribute
ID An ID value assigned by the server to uniquely identify a

file in the data.

This is not the same as the ID element, which is the
value assigned by the client and most likely will not
match.

discard If the server accepted the file but does not want it used
within the content, it sets this value to true. The client
receives the data and corrects the content to not contain
the file.

Each uploaded file contains one of these attributes and all the data contained
within it. eWebEditPro uploads only one file with each post, so nhormally you have
one <fileinfo> entry.

With the <FILEINFO> tag, the returned XML data should look something like this:

<XML ID=EktronFilel0O>
<?xml version="1.0"?>
<UPLOAD>
<FILEINFO ID="0" discard="False">

</FILEINFO>
</UPLOAD>
</XML>

Adding the File Information

The rest of the elements contain data about the file.

IMPORTANT! These elements must exist, even if there is no data within them.

This completes the XML data.

<XML 1D=EktronFilelO>
<?xml version="1.0"?>
<UPLOAD>
<FILEINFO 1D="0" discard="False">
<FSRC>C:\Inetpub\wwwroot\Arrows\next0.gif</FSRC>
<FURL>http://www.echo.com/ewebeditpro3/upload/me(1) .gif</FURL>
<FID></FID>
<FS1ZE>128</FSI1ZE>
<DESC></DESC>
<THUMBURL></THUMBURL>
<THUMBHREF></THUMBHREF>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 470

Automatic Upload

<FTYPE>image/gif</FTYPE>
<DWIDTH>0</DWIDTH>
<DHEIGHT>0</DHEIGHT>
<DBORDER>0</DBORDER>
<FRAGMENT></FRAGMENT>
<FERROR value="0""></FERROR>
</FILEINFO>
</UPLOAD>
</XML>

Step 6 — Respond Back to the Client

The XML data can be sent back by itself, or as part of a larger HTML page.
Normally, the bare-bones XML shown above is all that is returned, since it is all
the editor looks at.

But, if you are using a CMS that displays the resulting data, you may want to
return a complete HTML page. If you want to look sophisticated, include this data
island on a page with a table to display the data. See Also: "Data Island” on

page 471

Creating the Script
Here’s a practical example of how to create the script.

1. Implement a page that logs every receipt of an HTTP post (to a text file, for
example).

2. Configure WIFX to upload to this page. For example, if you create a page at
the path /postacceptor/WebForml.aspx, set the following in the
ImageEditConfig.xml file.

<autoupload type="/postacceptor/WebForml.aspx"'/>

Try to upload from WIFX.

Check the page’s log to confirm that WIFX hit it. Note that WIFX returns an
error even if this works properly because the page doesn't yet return the
proper XML packet.

5. After confirming that WIFX is hitting the page, change it slightly to loop
through all posted form fields and log their values.This lets you see exactly
what information WIFX is posting.

6. Write the code needed to produce the XML packet. See Also: "Step 5 — Build
the Return XML Data” on page 469

7. Setthe page to return an XML packet with dummy values. These should take
care of the WIFX error message and display a message like Upload
Successful! after the form is posted.

8. Decode the MIME packet in the image files and save it to the server's hard
drive.

Data Island

A data island is implemented as the repository for the return data. This is
generated by the server-side component and sent back in a standard Web page.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 471

Automatic Upload

Below is a sample data island and how it could be used in a returned page. For a
description of the XML elements used in this island, see "XML Element
Descriptions” on page 488.

See Also: "Assembling the Response XML Data Island” on page 474

<html>
<head><title>Sample Data Island</title></head>
<body>
<XML I1D=EktronFilelO>
<?xml version="1.0"7?>
<UPLOAD>
<FILEINFO ID="0" discard="false" width="0" height="0" border="0"">
<FSRC>iragshow. jpg</FSRC>
<FURL>
http://us.newsl.yimg.com/us.yimg.com/p/rids/20021219/s/1040306979.3758604392. jpg
</FURL>
<FS1ZE>102047</FSI1ZE>
<DESC>Slideshow: lraq and Saddam Hussein</DESC>
<THUMBURL>
http://us.newsl.yimg.com/us.yimg.com/p/rids/20021219/t/1040306979.3758604392. jpg
</THUMBURL>
<THUMBHREF>
http://story.news.yahoo.com/news?g=events/wl/082701iragplane&tmpl=sl&e=1
</THUMBHREF>
<FTYPE>image/jpeg</FTYPE>
<FERROR val="0"></FERROR>
</FILEINFO>
<FILEINFO ID=""1">
<FSRC>ivory_coast_xcnl06. jpg</FSRC>
<FURL>
http://us.news2.yimg.com/us.yimg.com/p/ap/20021218/capt.1040241167.ivory_coast_xcnl06. jpg
</FURL>
<FS1ZE>102047</FSI1ZE>
<DESC>Slideshow: lvory Coast Conflict</DESC>
<THUMBURL>
http://us.newsl.yimg.com/us.yimg.com/p/ap/20021218/thumb.1040241167.ivory_coast_xcnl06.jpg
</THUMBURL>
<THUMBHREF>
http://story.news.yahoo.com/news?tmpl=story&u=/021218/168/2w49d.html
</THUMBHREF>
<FTYPE>image/jpeg</FTYPE>
<FERROR val="0"></FERROR>
</FILEINFO>
<FILEINFO ID="2">
<FSRC>mdf171290. jpg</FSRC>
<FURL>http://us.news2.yimg.com/us.yimg.com/p/nm/20021218/md¥171290. jpg</FURL>
<FS1ZE>102047</FSI1ZE>
<DESC>"Rings" Leads Charge to Record</DESC>
<THUMBURL>
http://us.newsl.yimg.com/us.yimg.com/p/nm/20021218/amd¥171290. jpg
</THUMBURL>
<THUMBHREF>
http://story.news.yahoo.com/news?tmpl=story&u=/021218/161/2w6dq.html
</THUMBHREF>
<FTYPE>image/jpeg</FTYPE>
<FERROR val="0"></FERROR>
</FILEINFO>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 472

Automatic Upload

</UPLOAD>
</XML>
<h2>Uploaded File Information</h2>
<table DATASRC=#EktronFilelO cellpadding=3 border=1>
<thead>
<tr>
<th>Thumbnail</th>
<th>Image Display</th>
<th>Description of Image</th>
</tr>
</thead>
<tr>
<td></td>
<td></div></td>
<td><div DATAFLD="DESC"></div></td>
</tr>
</table>
</body>
</html>

The above is a complete example of how a data island could be returned. The
example produces this output.

W e et e -
* * @ 3 Qs e e o O B E0
F T S —— T
| J
i I eliwasiledl F il Bnfos mvntl en
| Thmwbos al Pasrrpess ol lmsge
i -

| i gl

b i
| |
i i

Here is a simple data island, by itself, generated by the server-side component.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 473

Automatic Upload

<XML ID=EktronFilel0O>
<?xml version="1.0"7?>
<UPLOAD>
<FILEINFO 1D="0">
<FSRC>mdf171290. jpg</FSRC>
<FURL>http://us.news2.yimg.com/us.yimg.com/p/nm/20021218/mdf171290. jpg</FURL>
<FID></FID>
<FS1ZE>128000</FSI1ZE>
<DESC>"Rings" Leads Charge to Record</DESC>
<THUMBURL>
http://us.newsl.yimg.com/us.yimg.com/p/nm/20021218/amdf171290. jpg
</THUMBURL>
<THUMBHREF>
http://story.news.yahoo.com/news?tmpl=story&u=/021218/161/2w6dq.-html
</THUMBHREF>
<FTYPE>image/jpeg</FTYPE>
<DWIDTH>0</DWIDTH>
<DHEIGHT>0</DHEIGHT>
<DBORDER>0</DBORDER>
<FRAGMENT></FRAGMENT>
<FERROR val="0""></FERROR>
</FILEINFO>
</UPLOAD>
</XML>

The above data island example is simplified from the full example shown above. It
is shown isolated from the rest of the HTML, and contains only one uploaded file.
This example is a typical string returned from EWepAutoSvr or the other server-
side scripts.

Assembling the Response XML Data Island

You can use the EWepAutoSvr module’s interface to assemble the response XML
data island. An object interface is used in place of a DOM interface to set the
values.

The ASP script sets values in the eWepAutoSvr object. Then, the eWepAutoSvr
object can produce the resulting full XML data island, which can be placed in the
returning document.

See Also: "EWepAutoSvr Object API” on page 477

Example
Below is an example of using the EWepAutoSvr module to create the complex
example shown in "Data Island” on page 471.
<I-- #include file="thumbnailmaker.asp"™ -->
<html>
<head><title>File Upload Response</title></head>
<body>

<h2>File Upload Response</h2>
<%
Dim g_strDatalslandID ~ holds the ID of the response data
Dim g_iClientMajorRev
Dim g_iClientMinorRev
Dim g_iFileCount

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 474

Automatic Upload

ReceiveSubmittedFiles " Saves the submitted files.

Response.Write(*'<p>Client version is: ' & g_iClientMajorRev & "." & g_iClientMinorRev &
"</p>")
Response.Write('<p>There were " & g_iFileCount & " Ffiles uploaded.</p>")

" Call the routine to save the submitted files

" to local locations.

" This also processes the uploaded files and

" generates the response data.

Sub ReceiveSubmittedFiles()
Dim BinaryFormData, uploadObj, fileObj, ServerLocation
Dim strNewFileName, strFileLoc, ErrorCode, iFileldx

BinaryFormData = Request.BinaryRead(Request.TotalBytes)
set uploadObj = CreateObject(*'eWepAutoSvr _EkFile™)
ServerLocation = "/images" * Hard coded the location for this sample.

strNewFileName = uploadObj .EkFileSave(BinaryFormData, ‘“‘uploadfilephoto™, _
Server .MapPath(ServerLocation), ErrorCode, "makeunique'™)

g_iFileCount = uploadObj.FileCount()
IT g_iFileCount > 0 then
Do while iFileldx < g_iFileCount
iFileldx = iFileldx + 1
Set fileObj = uploadObj.FileObject(iFileldx)
strNewFileName = fileObj.FileName()
strFileLoc = "HTTP://" & Request.ServerVariables(''SERVER_NAME™) & ServerLocation &
/" & strNewFileName
fileObj.FileUrl(strFileLoc)
FfileObj.Thumbnail (CreateThumbnail (strFilelLoc))
fileObj.ThumbReference(ExtractThumbnai lRef(strFileLoc))
loop

"Retrieve global data

g_strDatalslandID = uploadObj.ResponselD()
g_iClientMajorRev = uploadObj.ClientMajorRev()
g_iClientMinorRev = uploadObj.ClientMinorRev()

Response.Write(uploadObj -ResponseData())
End If

End Sub
%>

<% If g_iFileCount > O Then %>

<% If 1 = g_iClientMajorRev then %>
<h3 style="align:center">Uploaded File Information</h3>
<table DATASRC=#<%Response.Write(g_strDatalslandID)%> cellpadding=3 border=1>
<thead><tr><th>Thumbnail</th><th>Image Display</th><th>Description of Image</th></tr></thead>
<tr>

<td></td>

<td></div></td>

<td><div DATAFLD="DESC"></div></td>
</tr>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 475

Automatic Upload

</table>
<% End IF %>

<% Else %>
<p>No files were uploaded.</p>
<% End 1T %>

</body>
</html>

The above code includes a table to illustrate how you can use XML data in the
response page. It is not required with the XML data.

Steps to Receiving Content

Step 1 - Act on the Command

The uploadcontent command signals to the receiving server that a file is
included in the posting. The command is retrieved from the actiontyp field in
the posted form.

Step 2 - Extract the Content

Information about the uploaded content is in the "content_title", "content_size",
"content_type", and "content_description"” fields. The actual content is in the
"content_text" field.

The received content can be in HTML, XML, or RTF format. The format received
is determined by the client side scripting and configuration.

Below is an ASP line that extracts the content:
strContent = objUpload.EkFormFieldValue(binaryFormData, "content_text", ErrorCode)

Step 3 - Save the Content

The receiving script saves the content in the mechanism that it requires. Below is
ASP saving the content to the database:

AddNewContentToDatabase SQLFilter(strTitle), SQLFilter(strContent)

Step 4 - Return a Response

The editor displays the response in the editor itself. Because of this, the client
should generate a response that the user understands.

Below is an ASP example that generates a response which confirms the content
upload to the user.

strResp = “<html><body>"

If "New" = strDesc Then
strResp = strResp & ''<H2>New Content Received</h2>"
AddNewContentToDatabase strTitle, strHtml

Else
strResp = strResp & '"<H2>Updated Content Received</h2>"
UpdateContentlnDatabase strTitle, strHtml, striD

End If

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 476

Automatic Upload

strResp = strResp & '"Content Title: " & strTitle & "'
"
strResp = strResp & ‘‘<hr>body></html>"
Response.Write(strResp)

EWepAutoSvr Object API
These methods enable the file upload feature.
® (ClientMajorRev
® ClientMinorRev
® EkFileSave
® EkFileSave2
® EkFormFieldValue
® EkFileSize
® FileObject
® FileCount

® ResponseData

ClientMajorRev
Description

Returns the client’'s major revision number. The client sends its version number in
the ekclientversion submission field.

Example
iClientMajorRev = uploadObj.ClientMajorRev()

ClientMinorRev
Description

Returns the client’s minor revision number. The client sends its version number in
the ekclientversion submission field.

Example
iClientMinorRev = uploadObj.ClientMinorRev()

EkFileSave
Description

This method takes a given post stream and extracts the uploaded file from it. It
then uses the parameters to determine how to save the file.

The method also extracts information about the file being uploaded. This
information is saved in the File object (which you obtain using the FileObject
method) and is reflected in the response XML produced with the ResponseData
method. To retrieve the client version information contained in this stream, use the
ClientMajorRev and ClientMinorRef methods.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 477

Automatic Upload

See Also: "ClientMajorRev” on page 477; "ClientMinorRev” on page 477

This method is included to be compatible with existing EktronFilelO scripts, so
that only minimal changes are needed to incorporate this module into existing

routines.
WARNING! This method is obsolete and should not be used in future implementations. It

exists for compatibility purposes only. Replaced by EkFileSave2.
Parameters

Parameter Type Description

BinaryFormData Variant(String) The entire form data in binary form.

FormFieldName Variant(String) The name of the field used in the original form. This was

a Form field defined as type=""file".
DestinationDir Variant(String) The fully qualified path (for example,

c:\inetpub\wwwroot\test).

ErrorCode

Variant(Number)

A user supplied variable. This is set to 0 (zero) for
successful execution.

Otherwise, it is set to a server error code.

NameConflict Variant(String) Determines the behavior when the requested filename
conflicts with an existing file. Choose "makeunique”,
"overwrite" or "error". "error" is the default.

AcceptType Variant(String) Determines which file types the upload accepts (for
example, image/gif, application/msword). Not supported
in this release.

FilePermissionSet Variant(String) Not supported in this release.

ting

FileAttributes Variant(String) Not supported in this release.

ReturnString Variant(String) If ErrorCode (see above) is 0 (zero), this contains the
filename used to store the file, including the full path. If
ErrorCode is <> 0, this contains a matching error string.

Example

EkFileSave2

Description

ReturnString = EkFileSave (“'BinaryFormData', 'FormFieldName', ‘‘DestinationDir"™, ErrorCode,
[‘NameConflict'], [“AcceptType™], ["'FilePermissionSetting"], ["'FileAttributes])

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 478

Automatic Upload

See Also: "EkFileSave” on page 477

Parameters

Parameter Type Description

BinaryFormData Variant(String) The entire form data in binary form.

FormFieldName Variant(String) The name of the field used in the original form. This was
a Form field defined as type=""file".

DestinationDir Variant(String) The fully qualified path (for example,
c:\inetpub\wwwroot\test).

ErrorCode Variant(Number) A user supplied variable. This is set to O (zero) for
successful execution. Otherwise, it is set to a server
error code.

NameConflict Variant (String) Determines the behavior when the requested filename
conflicts with an existing file. Choose "makeunique”,
"overwrite" or "error". "error" is the default.

NewFilename Variant (String) If this value is present and is not an empty string, this
filename is used by EkFileSave?2 to write the file to the
filesystem.

This parameter lets the programmer override the forms
filename to which the file data is attached.

AcceptType Variant(String) Determines which file types the upload accepts (for
example, image/gif, application/msword). Not supported
in this release.

FilePermissionSetti Variant(String) Not supported in this release.

ng

FileAttributes Variant(String) Not supported in this release.

ReturnString Variant(String) If ErrorCode (see above) is 0 (zero), this parameter
contains the filename used to store the file, including the
full path.

If ErrorCode is <> 0, this contains a matching error
string.
Example

ReturnString = EkFileSave2 (‘“'BinaryFormData', "FormFieldName', '"DestinationDir", ErrorCode,
[""NameConflict'"], [“NewFilename'], ["'AcceptType'], ["FilePermissionSetting'],
["FileAttributes™])

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 479

Automatic Upload

EkFormFieldValue

Description

This method retrieves the value of a specific field in the binary form data passed
to it. It can retrieve the value of a text area, a list box selection, or any other item
that exists in the file.

Parameters

Parameter Type Description

BinaryFormData Variant(String) The entire form data in binary form.

FormFieldName Variant(String) The name of the field used in the original form. Any form
field name used in your original form. Fields with
type=""file" only return the filename submitted by the
user.

ErrorCode Variant(Number) This is a user supplied variable. This is set to 0 (zero) for
successful execution. Otherwise, it is set to a server
error code.

ReturnedFormField Variant(String) If ErrorCode (see above) is 0 (zero), this contains the

Value actual form field value. If ErrorCode is <> 0, this
contains a matching error string.

Example
ReturnedrFormFieldValue = fileObj.EkFormFieldvValue(*'BinaryFormbData', *‘FormFieldname’,
ErrorCode)
EkFileSize
Description
See Also: "FileSize” on page 484
Parameters

Parameter Type Description

BinaryFormData Variant(String) The entire form data in binary form.

FormFieldName Variant(String) The name of the field used in the original form. Only
fields with type=""File" return a valid size. The size is
in bytes.

ErrorCode Variant(Number) This is a user-supplied variable. This is set to 0 (zero)
for successful execution. Otherwise, it is set to a server
error code.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

480

Automatic Upload

Parameter Type Description
ReturnedSize Variant(String or If ErrorCode (see above) is 0 (zero), this field contains
long) the form file size in bytes. If ErrorCode is <> 0, this field
contains a matching error string.

Example

ReturnedSize = fileObj.EkFileSize("BinaryFormData", "FormFieldname', ErrorCode)

FileObject

FileCount

ResponseData

EkFileObject API

Description

Returns the object related to the name returned from the file upload. This object is
used to set each value for the file.

See Also: "EkFileObject API” on page 481
Parameters

Parameter | Description

FileName Either the name of the file returned from EkFileSave or
the 1-based index into the uploaded files.

Example
set fileObj = uploadObj.FileObject(strFileName)

Description

Returns the number of files uploaded. If enumerating, use the indexes into the
files with the FileObject method.

Example
iFileCount = uploadObj.FileCount()

Description

This returns the response data stream that should be sent back to the client side.
The return value should be placed into the content returned.

Example

strResponse = uploadObj .ResponseData();
Response.Write(strResponse)

These methods are available to the client script through the file object.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 481

Automatic Upload

® Description

® FileDimensions
® FileError

® FilelD

® FileName

® FileSize
® FileType
® FileUrl

® Fragment
® Thumbnail

® ThumbReference

Description
Description

This sets the description given to the file. Description is used in the title and alt
attributes in an image tag for images, and as the link text in other files.

Parameters

Parameter | Description

url The full URL to the resulting file. This is the path that a
browser uses to reference the file.

Example
FfileObj .FileUrl("http://www.ektron.com/images/gif/me.gif"")

FileDimensions
Description

Sets the dimensions of the image shown. If this is not called for, any value set to 0
uses the image’s dimensions.

Parameters

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 482

Automatic Upload

Parameter | Description

width The width to show the image. A value of 0 means to use
the image's dimension.

height The height to show the image. A value of 0 means to
use the image's dimension.

border The border width around the image.

Example
This puts a border around the image.
fileObj.FileDimensions(0, 0, 1)

FileError
Description
This sets error values from the upload process. Normally, this is a server error.
If ekFilelO had an internal error, and this is not called by the client script, it places
its internal error into these values.
Parameters
Parameter | Description
value The value of the error. A zero (0) means no error. If
there is an error internal to ekFilelO and 0 is set through
this parameter, the internal error is used.
desc The description of the error. A server may want to send
a translated version of this string.
Example
fileObj.FileError(102, "This file is not allowed on the system.')
FilelD

Description
If the client wants to assign an ID value to the uploaded file for use in the content,
use this method to specify the value.

This is not the ID used in the XML data to identify the file element group. Instead,
the server side script assigns this ID as a value in the client content.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 483

Automatic Upload

If the file is an image or a thumbnail is specified, this value is placed within an
 tag. If the file is not an image, and no thumbnail is specified, this value is
placed within an <A> tag.

Parameters

Parameter | Description

id The value to use as an ID.

Example
fileObj.FilelD("imgl027™)

FileName
Description

This returns the resulting file name. It is equivalent to what is normally returned
from the EkFileSave method.

It is a non-modifiable value.
Example
strNewFileName = fileObj.FileName()

FileSize
Description
This returns the size of the file in bytes.
Example
iSize = fileObj.FileSize()

FileType
Description

This specifies the file type. If this method is not called, EWepAutoSvr tries to
determine file type from the file’s extension or the file type sent by the client.

The server side script calls this method when processing changes to file type, or
when the file type is not the expected file type. For example, a .BMP file is
converted to a .GIF file, or a Word document is converted to a .PDF file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 484

Automatic Upload

If no thumbnail is given, this entry determines how the resulting file is represented
in the content. The following table describes how different files types are handled
when there is no thumbnail.

Type

How Handled if no Thumbnail

image/qif

The value set in FileUrl is placed within an tag.

The value set with the Description method is placed
within the title and alt attributes.

There is no link created. The "gif" portion (shown here)
is set to the specific type of image file.

If not assigned otherwise, EWepAutoSvr sees these

extensions as an image: "gif", "tif", "bmp", "tga", "emf",

“wmf", "img", "jpg", "jpeg", png".

pic", "pcx”,

other
(Default or a
given
unknown
type)

The value set in FileUrl is placed in an <A> tag. The
value set with the Description method is placed as text
within the link. The extension is appended to the type as
with image.

See Also: "Description” on page 482

Since this is a text field set by the script, other types can be implemented in the
future on the client side.

Parameters

Parameter

Description

type

The text type. These values are recognized:
® image/gif

® other

Example

fileObj.FileType(*'image/gif™)

FileUrl

Description

This sets the full URL to the resulting file. It may be the file's name with a
numbered extension or a completely different file type.

This must be the full reference location which includes a protocol (HTTP/HTTPS),
server (www.yahoo.com), and full path. A relative path is not allowed.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 485

Automatic Upload

NOTE If the Thumbnail method is called with a value, its URL value is used as the image
source value in the content.

Parameters

Parameter | Description

url The full URL to the resulting file. A browser would use
this path to reference the file.

Example
fileObj.FileUrl(""http://www.ektron.com/images/gif/me.gif")

Fragment
Description

If you want to determine how the resulting image appears in the content, specify
the HTML using this method.

If you specify an HTML fragment, the client side performs no processing and
offers the user no options to modify the content. The fragment goes into the
content as given. The user must work through the HTML or XML functionality to
modify the content.

NoOTE The example below is generally what the client side editor does with thumbnail
content. The main difference is that the client implements a tag around
both the thumbnail and the descriptive text. This allows the content to exist within
any section, including a paragraph.

Parameters

Parameter | Description

url The full URL to the resulting file. A browser would use
this path to reference the file.

Example

fileObj .Fragment(<table><tr><td></td></tr><tr><td>Photo of my
thumb</td></tr></table>")

Thumbnail
Description

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 486

Automatic Upload

This sets a thumbnail file to use in place of the uploaded file. It could be a
thumbnail generated from an image, or a thumbnail to use as an icon for an
uploaded file.

A thumbnail always has a link attached to it. If the ThumbReference method is not
called, the URL of the resulting file is used.

See Also: "ThumbReference” on page 487
Parameters

Parameter | Description

url The URL of the thumbnail file

Example
fileObj.Thumbnail (""http://www.ektron.com/images/thumbnails/me.gif"");

ThumbReference
Description

Use this parameter if a thumbnail needs to refer to a file other than the one that is
uploaded or if a thumbnail needs to call a page with parameters.

This must be the full reference location. It must include the protocol (HTTP/
HTTPS), the server (www.yahoo.com), and the full path. A relative path is not
allowed. The value must also be encoded, so for example, any ‘&' characters
must be entered as "&".

If this value is given, the value set with the FileUrl method is not used as a
reference. If this value is not given or is empty, the FileUrl value is used as a
reference.

Parameters

Parameter | Description

url The URL of a file or a page with parameters. The string
must be encoded.

Example

FileObj.ThumbReference(""http://story.news.yahoo.com/news?tmpl=story&u=/021218/161/
2wedg.html™);

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 487

Automatic Upload

XML Element Descriptions

DBORDER

DESC

This section describes these XML elements. You use them to build the return XML
data. See Also: "Step 5 — Build the Return XML Data” on page 469.

* DBORDER
® DESC

® DHEIGHT
< DWIDTH
® FERROR
*® FID

* FILEINFO

® FRAGMENT

® FSIZE
® FSRC
*® FTYPE
* FURL

* THUMBURL
® THUMBHREF
® UPLOAD

Description

The border to use around the image or thumbnail. If this value is not set or zero
(0), no border appears.

Example
<DBORDER>1</DBORDER>

Description

This contains the file description. It is sent from the client, but is also returned
since the server may want to change it.

If the file type is an image or a thumbnail is given, this value is used in the alt
and title attributes of the tag.

If the file type is other than an image, this value is the text contained within the link
(that is, <A>) tags.

Example
<DESC>"Rings" Leads Charge to Record</DESC>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 488

Automatic Upload

DHEIGHT

Description

The display height to use for the image or thumbnail. If this value is not set or 0,
the height of the image is used.

Example
<DHEIGHT>180</DHEIGHT>

DWIDTH

Description

The display width to use for the image or thumbnail. If this value is not set or 0, the
width of the image is used.

Example
<DWIDTH>300</DWIDTH>

FERROR

Description

Contains any error from the uploading and processing of the file. It may state that
there are no upload permissions, that the file does not meet a set of criteria, or
that there was a technical issue.

Example
<FERROR val="0""></FERROR>

Attributes

Attribute Description

val An integer value representing the error. A value of 0
means no error. The default is 0.

FID

Description

If the client wants to assign an ID value to an uploaded file for later processing, it
uses this element to specify its value.

This is not the ID used in the XML data to identify the file element group. Itis an ID
assigned by the server side script to have as a value in the client content.

If the file is an image, or a thumbnail is specified, this value is placed within the
 tags.

If the file is other than an image, and there is no thumbnail specified, this value is
placed within the <A> tags.

Example
<FI1D>img1027</FI1D>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 489

Automatic Upload

FILEINFO
Description
This element contains individual pieces of information about an uploaded file.
Example
<FILEINFO ID="0" discard="false'>
Attributes
Attribute Description
ID Each file contained in the list of files must have a unique
ID.
discard A server may accept the file, process the data, and
generate data, but the server may not want this file to be
available as a reference in the content.
Set this value to true to prevent the editor from offering
the file as a reference.
width The width to show the image or thumbnail. If set to O, the
image width is used. The default is 0.
height The height to show the image or thumbnail. If set to O,
the image height is used. Default is 0.
border The border width to apply to the image or thumbnail.
style Style information to apply to the image, thumbnail, or
link. If this is specified, width, height, and border
attributes are ignored.
FRAGMENT

Description

If the server does not want to have the Fileinfo information formatted
automatically, use this field to specify an HTML fragment to insert into the content
at the current location. The fragment determines how the resulting image appears
in the content.

If a fragment is specified, no image or link functionality is invoked on the returned
data. The HTML fragment is just inserted at the current location.

NoOTE The example below is generally what the client side editor does with the given
thumbnail content. The main difference is that the client implements a tag
around both the thumbnail and the descriptive text. The fragment allows the
content to exist within any section, including a paragraph.

Example

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 490

Automatic Upload

<FRAGMENT>
<table>
<tr>
<td></td>
</tr>
<tr>
<td>Photo of my thumb</td>
</tr>
</table>
</FRAGMENT>
FSIZE
Description
The size in bytes of the uploaded file.
Example
<FS1ZE>107342681</FSRC>
FSRC
Description
The original name of the source file. Ektron recommends using only the name and
not the full path sent by the client.
This is not the modified name. (The modified name goes into the FURL element.)
This is the name as given by the client.
The client script cannot affect this through the EWepAutoSvr interface. The
module sets this value internally from the upload.
Example
<FSRC>iragshow. jpg</FSRC>
FTYPE

Description

The resulting file type. A BMP file might be converted to a GIF file, or a Word
document converted to a PDF file.

If no thumbnail is provided, this entry determines how the resulting file is
represented in the content. The following table describes how file types are
handled when no thumbnail is provided.

Type How Handled

image/qif The FURL value is placed within tags. The
DESC value is placed within the title and alt
attributes. There is no link created.

The giT portion (shown here) is set to the specific type
of image file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 491

Automatic Upload

Type How Handled

other (Default or a given unknown type)
The FURL value is placed within <A> tags. The DESC
value is placed as text within the link.

Example
<FTYPE>image/jpeg</FTYPE>

FURL
Description
The full URL to the resulting file. It may be the file's name with a numbered
extension or a completely different file type.
This must be the full reference location. That is, it must include the protocol
(HTTP/HTTPS), server (www.yahoo.com), and full path. A relative path is not
allowed.
NOTE If there is a THUMBURL element, its URL value is used as the image source
value.
Example
<FURL>http://us.news2.yimg.com/us.yimg.com/p/nm/20021218/mdf171290. jpg</FURL>
THUMBNAIL

Description

A thumbnail may be assigned to the uploaded file. If the file is a Word document,
the server may want to assign an icon to the uploaded document rather than a
text link.

In the content, the thumbnail represents the uploaded file. The thumbnail contains
a link that the user can click to access the uploaded file.

<img src="../p/nm/20021218/amd¥171290.jpg" width="262" height="334" border="0"
alt="Description” title="Description">

When a thumbnail is specified, it is used in place of the FURL value returned.
Normally, a reference URL is returned with a thumbnail. But, if no reference is
sent, the URL of the resulting file is returned.

Example
<THUMBNAIL>http://us.newsl.yimg.com/us.yimg.com/p/nm/20021218/amd¥171290. jpg</THUMBNAIL>

THUMBHREF

Description

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 492

Automatic Upload

Use this element if a thumbnail needs to refer to a file other than the one that is
uploaded, or needs to call a page with parameters.

This must be the full reference location. It must include the protocol (HTTP/
HTTPS), the server (www.yahoo.com), and the full path. A relative path is not
allowed. The value must also be encoded, so any ampersand (&) characters must
be given as &.

If this value is given, the value of FURL is not used as a reference.

If this value is not given or it is empty, the FURL value is used as a reference.
See Also: "THUMBNAIL” on page 492, "FURL" on page 492

Example

<THUMBHREF>http://story.news.yahoo.com/news?tmpl=story&u=/021218/161/2w6dq.html
</THUMBHREF>

UPLOAD

Description

The root element of the data island. It contains all information about and the
results of the upload.

Image Upload Response Example with Proprietary Information

You can include any information with the image receipt XML information. The
response is considered valid as long as the data island is defined. The extra
information returned by the server can be processed by the client side scripting.

Below is an example response that contains HTML tags. When the editor receives
this, it does not display the HTML, but does find and parse the XML information. It
also contains an extra tag, Serverinfo, which returns information to the client.

<html>
<head>

<title>Posted File Received</title>
</head>

<body>

<hl>File Recieved</hl>

<p>The file posted is stored in the central repository for selection.
The content is modifed to reflect its location.</p>

<p>Thank you.</p>

<XML ID=EktronFilel0O>
<?xml version="1.0"?>
<UPLOAD>
<ServeriInfo>Image Stored In User Group</ServerInfo>
<FILEINFO ID="0" discard="False">
<FSRC>C:\Inetpub\wwwroot\Arrows\next0.gif</FSRC>
<FURL>http://www.echo.com/ewebeditpro3/upload/me(l) .gif</FURL>
<FID></FID>
<FSI1ZE>128</FSI1ZE>
<DESC></DESC>
<THUMBURL></THUMBURL>
<THUMBHREF></THUMBHREF>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 493

Automatic Upload

<FTYPE>image/gif</FTYPE>
<DWIDTH>0</DWIDTH>
<DHEIGHT>0</DHEIGHT>
<DBORDER>0</DBORDER>
<FRAGMENT></FRAGMENT>
<FERROR value="0"></FERROR>
</FILEINFO>
</UPLOAD>
</XML>

</body>
</html>

ColdFusion Example

Here is an example of how ColdFusion gathers the file and assembles the data.
All of the work is done within the script as defined in the document.

<cfinclude template="ewebeditprodefinedsn2.cfm">
<cfinclude template="#trim(replace(form.editor_media_path, "-*, ", "ALL'))#/imagepath.cfm">

<cfset variable.uploadcommand="#form.actiontyp#">
<cfset variable.ErrorNumber="0">
<cfset variable.ErrorDesc=""">

<cfif variable.uploadcommand eq "‘uploadcontent'>

<cfset variable.contenttitle="#form.content_title#">

<cfset variable.contentsize="#form.content_size#">

<cfset variable.contentdesc="#form.content_description#">

<html>

<body>

<H1>Content Received</hl>

<p style="color:red">The receiving page <i>does not</i> save the posted content on the
server. Content is not saved.</p>

<p style="color:red*">Click on "Undo" to restore the previous content.</p>

Content Title:

<cfoutput>#variable.contenttitle#</cfoutput>

Content Size:

<cfoutput>#variable.contentsize#</cfoutput>

Content Description: *

<cfoutput>#variable.contentdesc#</cfoutput>

</body>
</html>
</cfif>

<cfif variable.uploadcommand eq "uploadfile'>
<html>
<body>
<H1>File Received</h1>
<p>Uploading the Ffile to the server.</p>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 494

Automatic Upload

<CF_ewebeditprouploadfile
allowexts="#trim(replace(form.extensions, "-', "', "ALL'™))#"
destdir="#variable.DestDir#"
renamefile="Yes"
uploadfile="#form.uploadfilephoto#"
nameconflict="MAKEUNIQUE"
TempDir="#variable_DestDir#">
<cfif errorlevel>
<p>Error saving the file on the Cold Fusion server. Error level is #errorlevel#._.</p>
<cfset variable.ErrorNumber="1">
<cfset variable.ErrorDesc="Error saving the file on the Cold Fusion server.'>
<cfelse>

<CFQUERY NAME="i_media" DATASOURCE=""#DSN#"">
INSERT INTOmedia_tbl (media_title, media_path, media_filename, media_upload_date,
media_filesize, user_name,
site_id, media_deleted, extension_id, media_width, media_height)
VALUES("#uploadedfilename#", “#trim(replace(form.editor_media_path, "-", ",
“ALL™)))#/", “#uploadedfilename#®, #DateFormat(Now(), "MM/DD/YY')#,
#trim(replace(form.file_size, "-", ", "ALL"))#, “user name-",
0, 0, 1, 0, 0)
</CFQUERY>

</cfif>

<XML 1D="EktronFilel0">
<?xml version="1.0"?>

<UPLOAD>
<FILEINFO 1D="0" discard="False">
<FSRC><cfoutput>#trim(original_name)#</cfoutput></FSRC><!--- Original source given by
the client should go in here --->
<FURL><cfoutput>#trim(replace(form.editor_media_path, *-", ", "ALL"))#/

#uploadedfilename#</cfoutput></FURL>

<FID></FID>

<FSI1ZE>342</FSI1ZE>

<DESC>My Description</DESC>

<THUMBURL></THUMBURL>

<THUMBHREF></THUMBHREF>

<FTYPE>image/gif</FTYPE>

<DWIDTH></DWIDTH>

<DHEIGHT></DHEIGHT>

<l-——

Note:
ColdFusion chokes on DBORDER because ColdFusion tags used to start with DB
so it automatically converts DB to CF which becomes CFORDER which is an invalid tag

—_——>

<cfoutput><DB</cfoutput>0RDER></DB<cfoutput>0RDER></cfoutput>

<FRAGMENT></FRAGMENT>

<cfif variable_ErrorNumber eq "0">
<FERROR value="0"></FERROR>

<cfelse>
<FERROR value="1"><cfoutput>#variable_ErrorDesc#</cfoutput></FERROR>

</cfif>

</FILEINFO>
</UPLOAD>
</XML>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 495

Automatic Upload

</body>
</html>

</cfif>

<cfif variable.uploadcommand neq "uploadcontent'>
<cfif variable.uploadcommand neq "uploadfile">

<html>

<body>

<H1>Content Received</h1l>

<p>Upload command is not recognized.</p>

<p>I1t was [<cfoutput>#variable.uploadcommand#</cfoutput>]</p>

</body>
</html>
</cfif>
</cfif>
ASP Example
Here is an example of how ASP gathers the file and assembles the data. Most of
the work of creating the XML is within the eWepAutoSvr.dll module.
<I-- #include file="functions.asp" -->

<%
" mediaautoreceive.asp

%>

The functions.asp script holds the database functionality.

<%
Dim g_LogicalRefDestination
Dim g_objUpload
Dim g_binaryFormData

Set g_objUpload = CreateObject(*eWepAutoSvr_EkFile')
g_binaryFormData = Request.BinaryRead(Request.TotalBytes)

"Recieve and save the files
ProcessSubmittedForm

" Examines the submitted for to determine what
* the client is uploading and to perform the
appropriate operation.
Sub ProcessSubmittedForm()

Dim strCommand, ErrorCode

" Extract the "actiontyp™ field.
* This contains the upload command.

Receives files without involving the ASP database user interface.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

496

Automatic Upload

strCommand = g_objUpload.EkFormFieldValue(g_binaryFormData, '"actiontyp', ErrorCode)

" These are the possible commands:
IT strCommand = "uploadfile”™ Then
ReceiveSubmittedFiles " Saves the submitted files.

Elself strCommand = "uploadcontent”™ Then
ReceiveContent
Else
Response.Write(''<html><body><h1>Unknown Posting.</hl></body></html>"")
End If
End Sub

® This function will receive the files and send back

* the required response data. There is no processing

* of the Ffiles and there is no affecting the file data.

Sub ReceiveSubmittedFiles()
Dim objFile, iErrorCode
Dim strLogicalRefDest, strFileAltTitle, strRegWebRoot, strimageDate
Dim iFileSize, iExtensionlD, iWidth, iHeight, strFileType

strLogicalRefDest = g_objUpload.EkFormFieldValue(g_binaryFormData, '"editor_media_path",
iErrorCode)

strFileAltTitle = g_objUpload.EkFormFieldvValue(g_binaryFormData, "file_title", iErrorCode)

strReqWebRoot = g_objUpload.EkFormFieldvalue(g_binaryFormData, "web_media_path",
iErrorCode)

strimageDate = g_objUpload.EkFormFieldvalue(g_binaryFormData, "img_date', iErrorCode)

iFileSize = g_objUpload.EkFormFieldvalue(g_binaryFormData, "file_size", iErrorCode)

iExtensionID = g_objUpload.EkFormFieldValue(g_binaryFormData, "extension_id", iErrorCode)

iWidth = g_objUpload.EkFormFieldValue(g_binaryFormData, "width'", iErrorCode)

iHeight = g_objUpload.EkFormFieldvalue(g_binaryFormData, "height', iErrorCode)

strFileType = g_objUpload.EkFormFieldvValue(g_binaryFormData, "file_type', iErrorCode)

strNewFileName = g_objUpload.EkFileSave(g_binaryFormData, "uploadfilephoto™, _
Server .MapPath(strLogicalRefDest), iErrorCode, "makeunique'™)

IT g_objUpload.FileCount() > O then
Set objFile = g _objUpload.FileObject(1)
strNewFileName = objFile.FileName()

objFile.FileUrl(MakeMediaPathName(strReqWebRoot, strNewFileName)) ~ see:
functions.asp

AddFileToDatabase strFileAltTitle, strReqWebRoot, strNewFileName, strimageDate,
iFileSize, iExtensionlD, iWidth, iHeight

Set objFile = Nothing
End If

Response.Write(g_objUpload.ResponseData())

End Sub

" This routine processes the submission of the
" content contained within the eWebEditPro editor.
Sub ReceiveContent()

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 497

Automatic Upload

Dim strResp
Dim ErrorCode
Dim strTitle
Dim strHtml
Dim striD

strTitle = SQLFilter(g_objUpload.EkFormFieldvalue(g_binaryFormData, 'content_title",
ErrorCode))

strHtml = SQLFilter(g_objUpload.EkFormFieldvValue(g_binaryFormData, '‘content_text",
ErrorCode))

striD = g_objUpload.EkFormFieldValue(g_binaryFormData, ‘‘content_description”, ErrorCode)

strResp = ''<html><body>"

IT "New" = striID Then
strResp = strResp & ''<H2>New Content Received</h2>"
AddNewContentToDatabase strTitle, strHtml

Else
strResp = strResp & '"<H2>Updated Content Received</h2>"
UpdateContentlnDatabase strTitle, strHtml, striID

End If

strResp = strResp & ""Content Title: ™ & strTitle & "
"

"strResp = strResp & '"'Content Size: " &
g_objUpload.EkFormFieldvValue(g_binaryFormData, '‘content_size', ErrorCode) & "'
"

"strResp = strResp & ''Content Description: "™ & striID & "
"

"strResp = strResp & '"'Content Type: " &
g_objUpload.EkFormFieldValue(g_binaryFormData, ‘‘content_type', ErrorCode)

"strResp = strResp & ''
"
"strResp = strResp & ''<H3>Submitted Content Below</h3><hr>"
"strResp = strResp & Server.HTMLEncode(strHtml)

strResp = strResp & "'<hr>"
strResp = strResp & ''</body></html>"

Response.Write(strResp)
End Sub

%>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 498

Automatic Upload Object

You can programmatically control the Automatic Upload feature through a
Object Interface, available through the Automatic Upload Object Interface.

For example:

objMedia = objEditor_MediaFile();
objAutoUpload = objMedia.AutomaticUpload();
objAutoUpload.AddFileForUpload(strFileName, strDescription);

See Also: "Media File Object” on page 19

Media File Object Properties

The Automatic Upload Object Interface supports the standard way of setting
and retrieving property values, such as setProperty, getProperty, and
getPropertyString.

See Also: "Method: getProperty” on page 71, "Method: getPropertyString” on
page 72, "Method: setProperty” on page 99

The Media File Object has a few unique properties and several other
properties that are a subset of the media object properties.

See Also: “Property: TransferMethod” on page 119; “Property: ServerName”
on page 108

Automatic Upload Object Properties as a Subset of the Media Object
Settings

The definitions for the following automatic upload properties are almost
identical to the larger media object properties. They differ because they affect
only the automatic upload mechanism, having no effect on the larger media
object settings.

® “Property: LoginName” on page 108

® “Property: LoginRequired” on page 109
® “Property: Password” on page 109

® “Property: TransferRoot” on page 109

® “Property: ValidExtensions” on page 109

® “Property: WebRoot” on page 109

NOTE To set the server-side receiving script, use the TransferMethod property. See
Also: "Property: TransferMethod” on page 119

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 499

Content Upload

The content upload feature lets a user upload content to the server. The
server returns a response in the editor. For instance, the response could
summarize the content that was uploaded to the server.

An example of this feature would be a nurse who needs patient information.
The nurse enters patient data, uploads it, and receives information back from
the server about the patient without refreshing the page. The nurse could
then correct information on the received data and submit it to the server.

Content Upload, part of the Automatic Upload feature, works like Automatic
Upload in that

1. Contentis uploaded in a form.
2. The server retrieves the field value.
3. The server responds to the client.

NOTE The Content Upload feature is configured in the configuration data. So,
unless you need to change something, the client scripting does not need to
change the configuration for a client upload.

Retrieving Content from eWebEditPro

To retrieve editor content, you can use the upload command or the
GetContent method. Both use a standard set of content types to specify the
kind of information to retrieve from the editor. As examples

® client side JavaScript uses GetContent to retrieve the HTML header for
processing

® the content upload command sends the content as RTF to the server

The rest of this chapter explains how to use the content upload feature
through these subtopics:

® "The Content Upload Command” on page 500
® "The Receiving Page” on page 505
® "Content Types” on page 507

® "Content Setting API” on page 501

The Content Upload Command

The Content Upload’s command is cmdmfuup loadcontent. When this
command is given to the editor (either through the menu bar or client
scripting), the content is uploaded to the server. This content does not reach
the client-side JavaScript or the form.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 500

Content Upload

To enable the Content Upload feature in the user interface, add the
cmdmfuuploadcontent command button in the interface section of the
configuration data to a toolbar. If the button needs to be added from the client
script, use the Toolbar object interface to add it. Although you can configure the
upload using the Automatic Upload Object Interface, only the string command can
execute the upload. (See Also: "Automatic Upload Object Interface Properties” on
page 501)

The command’s arguments are listed below.

Argument Description

String The requested content type to post to the server.
Param See Also: "Content Type Categories” on page 507

Long Param Not used

Content Setting API

Automatic Upload

Two API methods can be used to retrieve content from the editor and set content
back to the editor.

® "Method: GetContent” on page 65

® “Method: SetContent” on page 95

You can use the methods with client side JavaScript to extract or set information
about the content. The JavaScript can place the extracted information in a field
and post it to the server or process it on the client side.

Object Interface Properties

The Automatic Upload Object Interface has the following properties, which let you
configure the upload to the server.

Property Name

Type Description

ContentTitle

String The title of the content being uploaded. The title is set
externally to the editor, and can be set within the ready
notification.

The server receives this value when the content is posted.

ContentDescription String A description of the content. The description is set

externally to the editor, and can be set within the ready
notification.

The server receives this value when the content is posted.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 501

Content Upload

Property Name Type

Description

GetContentType String

Specifies the type of content to post to the server when

content is uploaded through the internal Content Upload
mechanism. To see a list of valid values, go to "Content
Type Categories” on page 507.

See Also: "How Content Type is Determined” on page 508

JavaScript Example

Below is a JavaScript example of using the Automatic Upload Object Interface.

function UploadEditorContent(sEditorName, sTitle, sDescription)

{
var objAutoUpload;

objAutoUpload = eWebEditPro.instances[sEditorName].editor.MediaFile().AutomaticUpload();

objAutoUpload.ContentTitle = sTitle;
sDescription;

objAutoUpload.ContentDescription =

eWebEditPro. instances[sEditorName].editor . ExecCommand(*‘cmdmfuuploadcontent™, _

“whole', 0);
b

Fields in the Posted Form

This section describes the fields used in the posted content upload form. The
server receives the form when the content is uploaded.

Field

Description

actiontyp

The command of what posting this is. (Notice the
missing ‘e’ in the name.)
For content upload, the value is uploadcontent.

content_description

The description of the content.

A content management site could put information (such
as an ID) about the uploaded document into this field
and then parse the information.

content_size

The size of the content in characters

content_text

The actual DHTML or XML content posted to the server.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 502

Content Upload

Field Description

content_title The title given to the content. This is usually done by the
user, but not restricted to this.

content_type The type of content send. See "Content Types” on
page 507 for a list of types.

ekclientname The name of the client application. This normally has the
"ekmediatransfer” value. Error check this.

ekclientversion The version of the upload module on the client side. The
version must be 1.0 or higher to support this upload
mechanism. Error check this.

_isChanged A standard HTML hidden input field whose name is
formed by concatenating the editor instance name with
_isChanged. For example, if the editor name is
MyContentl, the field name is
MyContentl_isChanged.

The value of the field is 0 if the content was not saved,
and 1 if it was saved. For example, if the
eWebEditPro. instances[n].save() method is
called, the value is 1. Otherwise, the value of the field is
0.

You can use this field in a server-side script to determine
if a content field has changed. For multiple content fields
with 'GetType' assigned, you can use this field to
determine if the field values are valid.

Example (ASP)
For an editor defined as:

<% =eWebEditProEditor("'TextHTML1", "100%",
250, strContentl) %>

<% =eWebEditProField("TextHTML1", "TextHTML1",
“htmlbody", ", ") %>

<% =eWebEditProField("TextHTML1", "TextOnlyl",
", ttextt, M) %>

The following script reads the values when the page is
submitted. The "TextOnly' field is only valid if the
"TextHTML1_isChanged' field does not contain the value
"0".

<% =Request.Form("'TextHTML1") %>

<% If Request.Form('TextHTML1_isChanged™) <> 0O
Then %>

<hr>

<% =Request.Form('TextOnlyl'™) %>

<% End I %>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 503

Content Upload

Below is an ASP example of how to use these fields. The example receives
content and returns it to the client as encoded HTML.

" This ASP routine processes the submission of the
" content contained within the eWebEditPro editor.
Sub ReceiveContent()

Dim strResp

Dim ErrorCode

strResp = ''<html><body>"

strResp = strResp & ''<H2>Content Successfully Received</h2>"

strResp = strResp & ''<p style="color:red">However, the sample page that received the
content <i>does not</i> save the posted content on the server.</p>"

strResp = strResp & ''<p style="color:red; font:bold">The content is not saved.</p>"

strResp = strResp & ''<p style="color:red">Modify the sample receiving page to save the
content or specify another receiving page that does save the content.</p>"

strResp = strResp & ''<p style="color:red; font:bold">Click on "Undo" to restore your
content.</p>"

strResp = strResp & "
"

strResp = strResp & "Content Title: " &
g_objUpload.EkFormFieldvValue(g_binaryFormData, '"‘content_title", ErrorCode) & "'
"

strResp = strResp & '"Content Size: " &
g_objUpload.EkFormFieldvValue(g_binaryFormData, '‘content_size', ErrorCode) & "'
"

strResp = strResp & ''Content Description: ™ &
g_objUpload.EkFormFieldValue(g_binaryFormData, ‘‘content_description’, ErrorCode) & "
"

strResp = strResp & ''Content Type: " &
g_objUpload.EkFormFieldValue(g_binaryFormData, ‘"‘content_type', ErrorCode)
strResp = strResp & "
"

strResp = strResp & '"<H3>Submitted Content Below</h3><hr>"

strResp = strResp & Server.HTMLEncode(g_objUpload.EkFormFieldValue(g_binaryFormData,
"‘content_text', ErrorCode))

strResp = strResp & "<hr>"

strResp = strResp & ''</body></html>"

Response._Write(strResp)
End Sub

Steps to Receiving Content

Step 1 - Act on the Command

The uploadcontent command signals the receiving server that the posting
includes a file. The command is retrieved from the actiontyp field of the posted
form.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 504

Content Upload

Step 2 - Extract the Content

The information about the uploaded content is contained within the "content_title",
"content_size", "content_type", and "content_description"” fields. The actual
content is contained in the "content_text" field.

The content received can be in HTML, XML, or RTF format. The format received
is determined by the client side scripting and configuration.

Below is an ASP line that extracts the content.
strContent = objUpload.EkFormFieldValue(binaryFormData, " content_text", ErrorCode)

Step 3 - Save the Content

The receiving script saves the content in the mechanism that it requires. Below is
ASP code that saves the content to the database.

AddNewContentToDatabase SQLFilter(strTitle), SQLFilter(strContent)

Step 4 - Return a Response

Because eWebEditPro displays the response in the editor, the client should
generate a response that the user understands.

Below is an ASP example showing how to generate a response that confirms the
content upload.

strResp = “<html><body>"
If "New" = strDesc Then
strResp = strResp & ''<H2>New Content Received</h2>"
AddNewContentToDatabase strTitle, strHtml
Else
strResp = strResp & '"<H2>Updated Content Received</h2>"
UpdateContentlnDatabase strTitle, strHtml, striID
End If
strResp = strResp & "Content Title: ™ & strTitle & "'
"
strResp = strResp & ‘‘<hr>body></html>"
Response.Write(strResp)

The Receiving Page

Like Automatic Upload, Content Upload uses a receiving page on the server. The
form with the data is posted to the receiving page.

The receiving script determines how and where content should be saved. The
content is usually stored as a string in a database.

If you use the receiving page specified for Automatic Upload, the content upload
can occur on the client side with just the command. The server side administrator
or CMS builder must create the receiving page.

That page is specified in the configuration data or in the Automatic Upload Object
Interface. The code below illustrates where the Automatic Upload page is
specified in the configuration data.

<transport .. >
<autoupload type="[eWebEditProPath]/ewepreceive.asp™ .. />

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 505

Content Upload

The code below illustrates the object interface API that sets the receiving page.
objAutoUpload.TransferMethod = "[eWebEditProPath]/ewepreceive.asp’;

A command, uploadcontent, is sent to the page in the actiontyp field that
indicates the purpose of the upload.

Creating a Receiving Page

The page receiving the content must follow these steps. (The steps match the
Automatic Upload feature’s rules for receiving images.)

NOTE Although the examples provided use ASP, they could also use Cold Fusion, JSP,
or any other server scripting that allows access to posted forms.

1. The receiving page looks for the command specified in the actiontyp field.
Below is an ASP example.

" Examines the submitted for to determine what
* the client is uploading and to perform the
" appropriate operation.
Sub ProcessSubmittedForm()
Dim strCommand, ErrorCode

" Extract the "actiontyp" field.

* This contains the upload command.

strCommand = g_objUpload.EkFormFieldValue(g_binaryFormData, '"actiontyp', _
ErrorCode)

" These are the possible commands:

IT strCommand = "uploadfile”™ Then
ReceiveSubmittedFiles " Saves the submitted files.

Elself strCommand = "uploadcontent”™ Then
ReceivePostedContent

Else

Response .Write("'<html><body><hl1l>Unknown Posting.</hl></body></html>"")
End If
End Sub

2. Retrieve content from the content_text field.

StrContent = g_objUpload.EkFormFieldvValue(g_binaryFormData, ‘‘content_text', _
ErrorCode)

3. Retrieve additional information about the posted content from the
content_title, content_size, content_description, and
content_type fields.

strvVal = g_objUpload.EkFormFieldvalue(g_binaryFormData, 'content_title", _
ErrorCode)

strvVal = g_objUpload.EkFormFieldvalue(g_binaryFormData, 'content_size', ErrorCode)

strVal = g_objUpload.EkFormFieldvalue(g_binaryFormData, "content_description™, _
ErrorCode)

4. Store the information in a database. The page can also provide user
feedback.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 506

Content Upload

Content Types

strResp = ''<html><body>"
strResp = strResp & '"<H2>Content Received</h2>"
strResp = strResp & g_objUpload.EkFormFieldvalue(g_binaryFormData,

"content_title", ErrorCode)
strResp = strResp & ''</body></html>"
Response.Write(strResp)

This section describes the supported content types and their limitations. They can
be used as parameters of the GetContent method and the
cmdmfuuploadcontent command.

What Happens if a Content Type is Not Supported

When retrieving content (that is, using the GetContent method), if a content type
is not supported (either because the request is invalid or the content type is not
supported under the editor’s current mode), no string is returned.

When setting content, if a specified content type is not the content type being set,
the resulting display in the editor is undefined.

Content Type Categories

HTML Information

Content types can be divided into these categories:

® HTML
® Textonly

® Content in RTF format

The following tables describe the content types in each category.

Content Type | Description Parameters Works Works

with Get with Set
Content? Content?

htmlbody The body of the content. Mainly valid not used yes yes
in WYSIWYG or source view modes.

htmlheader The HTML header information. not used yes yes

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 507

Content Upload

Content Type | Description Parameters Works Works
with Get with Set

Content? Content?

htmlwhole The entire content. not used yes yes

If the mode is WYSIWYG or source
view, the full HTML is set or returned,
and the cleaning level specified in the
configuration is applied.

If the mode is data design or data
entry, the entire design/entry packet
is set or returned.

Plain Text
Content Type | Description Parameters Works Works
with Get with Set
Content? Content?
text The text of the content. Formatting not used yes no
information not included.

Content in RTF Format

Content Type | Description Parameters Works Works
with with
Get Set

Content? Content?

rtf The full content in RTF format. not used yes yes

How Content Type is Determined

During a content upload, the following series of checks determines the content
type being retrieved.

1. Is content type specified in the GetContent method? (See "Method:
GetContent” on page 65.) If not, go to step 2.

2. Is it specified in the Automatic Upload Interface Object? (See "Automatic
Upload Object Interface Properties” on page 501.) If not, go to step 3.

3. Is it specified in the configuration, specifically the mode attribute of
standard element? (see "The Mode Attribute” on page 509.) If not, go to
step 4.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 508

Content Upload

4. htmlbody type is used.
The Mode Attribute

The mode attribute specifies which content type to publish when the type is not
specified elsewhere. The attribute determines both what is returned from this API
and what is posted with the cmdmfuuploadmedia string command.

Element Name: Standard

Attribute Name: mode

Type: String

Enumerated Values: See "Content Type Categories” on page 507

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 509

WeblmageFX

WeblmageFX is an external, add-on product available from Ektron.

WeblmageFX allows the user to

1.
2.

3.

Load an image in an image editor
Modify the image in several ways, including

— adjusting brightness, contrast, sharpness
— adding text

— changing its dimensions

Update the editor content with the new version of the image

The following diagram describes where WeblmageFX fits in with the other editor
components.

- | Editor/
client

L

End User

S
Irnage Inte r""Et{_lntern etl—
Editing (letworly Tperver

The feature is installed to the webroot\ewebeditpro5 directory by default.
When the feature is installed on a client, the Webmaster uses the WeblmageFX

object to control the feature’s operation. The support of this feature involves

B
B
B
This
-
-

additions to eWebEditPro's API
additions to the configuration data

an object available to the client

section covers these topics.

Using the WeblmageFX Object

Adding a Toolbar Button to Launch WeblmageFX
New Configuration Variable

WeblmageFX’s configuration data

Methods for manipulating WeblmageFX

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1

510

WeblmageFX

® Events for manipulating WeblmageFX

® Commands Unique to WeblmageFX

To learn how the user interface works, please refer to the eWebEditPro User
Guide.

Using the WeblmageFX Object

Assigning Configuration

Before WeblmageFX is displayed, a configuration must be assigned to determine
its functionality. This is normally done in the eWebEditPro's configuration XML
data.

<?xml version="1.0" encoding="is0-8859-1"?>
<config product="eWebEditPro">

<features>

<mediafiles>

<imageedit>

<control src="[WeblmageFXPath]/ImageEditConfig.xml" />

</imageedit>
Also, a client script can assign a configuration file to WeblmageFX. This is done
using the SetConfig method in the Object.
objImageEdit.SetConfig(slmageConfigURLorStream);

See Also: “Method: SetConfig” on page 94

Retrieving the Object

To access the feature, a client script must first retrieve the object using the
ImageEditor method.

var objlInstance = eWebEditPro.instances[sEditorName];
var objlmageEdit = objlInstance.editor.ImageEditor();

Checking Availability

When a client retrieves the object, use the IsPresent method to determine if
WeblmageFX is available.

if(false == objlImageEdit. IsPresent())
{

}

alert(""The Image Editor is not available.™);

See Also: “Method: IsPresent” on page 78

If WeblmageFX is available, have the client scripting use the IsVisible method to
determine if it is currently displayed to the user.

if(false == objlImageEdit.IsVisible())

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 511

WeblmageFX

{

eWebEditPro. instances[sEditorName].editor.ExecCommand(**cmdmfueditim
age”, ", 0):
3

See Also: “Method: IsVisible” on page 79

Displaying WebimageFX
Because the display of WeblmageFX within eWebEditPro is a function of
eWebEditPro, you must use eWebEditPro’s command mechanism to display the
feature to the user. Use the cmdmfueditimage command to make the editor
visible.

eWebEditPro. instances[sEditorName].editor.ExecCommand('‘cmdmfueditimage™, ", 0);

You can determine if WeblmageFX is already displayed by using the isVisible
method. If it is, sending the command hides WeblmageFX. Here is how to check
WeblmageFX'’s display status.

if(false == objlImageEdit.IsVisible())

{

}

eWebEditPro. instances[sEditorName].editor.ExecCommand('‘cmdmfueditimage™, ", 0);

See Also: "Method: IsVisible” on page 79

Controlling WeblmageFX

Once the WeblmageFX object is obtained and the feature is available, you can
control functionality through the object. Below is an example method call that
displays the Save As image dialog.

objImageEdit.AskSaveAs();
See Also: "Method: AskSaveAs” on page 47

Full Example

Below is a full example that performs all of the object retrieval and error checking
to produce the Save As dialog in WeblmageFX.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 512

WeblmageFX

function SaveEditedImageAs(sEditorName)

{
var objlInstance = eWebEditPro.instances[sEditorName];
var objlImageEdit = objlnstance.editor.ImageEditor();
if(true == objlImageEdit. IsPresent())

{
f(true == objlmageEdit.IsVisible())

i

{
objImageEdit.AskSaveAs();

b

}

else

{
}

alert(*"The Image Editor is not available.™);

Adding a Toolbar Button to Launch WeblmageFX

By default, the command to launch the feature (cmdmfueditimage) is included
within the mediafiles element of the configuration data.

<mediafiles>

<l-- The command below will only be enabled when the Ektron
WeblImageFX tool is installed. -->
<cmd name="‘cmdmfueditimage' key="freehand" ref="cmdImgEdit" />

</mediafiles>

Users can execute the command by clicking Image Editor from the right-click
context menu.

A toolbar button to execute the command is not visible by default. To make it
visible, add <button command="'cmdmfueditimage' /> to the toolbar section
of eWebEditPro’s configuration data.

See Also: "Defining the Toolbar” on page 166

New Configuration Variable

Webimagefx adds an element, imageedit, to the mediafiles element of
eWebEditPro’s configuration data. The element specifies the location of the
feature’s configuration data file. Here is the default value.

<mediafiles>
<imageedit>
<control src="[WeblmageFXPath]/ImageEditConfig.xml" />
</imageedit>
</mediafiles>

When specified in the configuration, the path expands to include the installation
location of WeblmageFX on the server:

http://www.mysite.com/webimagefx/ImageEditConfig.xml

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 513

WeblmageFX

WeblmageFX’s Configuration Data

WeblmageFx's configuration data is captured during installation into a file,
ImageEditConfig.xml. The configuration data lets developers manage many

NOTE

aspects of the feature, such as:
® file formats in which graphics can be saved
® whether a user can change an image’s format or name

® whether a user can create a new image

See Also: "The Configuration Data” on page 248
The installed version of the file is shown below.

<imagedit enabled=""true">
<interface name="standard" allowCustomize="false'>
<menu name="editbar' newRow="false"

showButtonsCaptions="false" wrap="false'>

<caption localeRef="mnuEdit" />
<button command="‘cmdtext' />
<button command="cmdblur" />
</menu>
</interface>
<operations>
<valformats enabled=""true">
<imgfmt>image/gif</imgfmt>
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>
</valformats>
<valoutformats>
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>
</valoutformats>
<imgcreate allow="true"/>
<fmtchange allow="true"/>
<namechange allow=""true"/>
<command name="‘cmdtext'>
<image key="imagetext' />
<caption localeRef="btnText" />
<tooltiptext localeRef="cmdText" />
</command>
</operations>
</imgedit>

Note that WeblmageFX'’s root element is <imageedit/>.

Below is an alphabetical list of elements in imageedit.xml, and a link to more

information for each one.

Since many elements are also used in the standard configuration data, they are

explained in that chapter.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

514

WeblmageFX

Element For information, see

button "button” on page 272

caption "Caption” on page 274

command “Commands Unique to WeblmageFX”
on page 526;"command” on page 275

fmtchange "fmtchange” on page 515

image "image” on page 281

imgcreate "imgcreate” on page 516

imgedit "imgedit” on page 516

imgfmt "imgfmt” on page 517

interface "interface” on page 282

menu "menu” on page 288

namechange "namechange” on page 517

operations "operations” on page 518

tooltiptext "toolTipText” on page 297

valformats "valformats” on page 519

valoutformats "valoutformats” on page 520

fmtchange

Determines whether or not the user can change the file format of the image being

edited.
See Also: "imgfmt” on page 517

Element Hierarchy
<imgedit>

<operations>
<fmtchange>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

515

WeblmageFX

Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
allow Boolean true If this value is true, the user can change
the format of the image file being edited.
Example
<fmtchange allow="true'"/>
imgcreate

Determines whether or not the user can create a new image.

Element Hierarchy

<imgedit>
<operations>
<imgcreate>
Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
allow Boolean true If this value is true, the user can create a
new image.
Example
<imgcreate allow=""true'"/>
imgedit

Contains all configuration information used by WeblmageFX. This is the feature’s
root element.

Element Hierarchy

<imgedit>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 516

WeblmageFX

Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within this tag is
ignored and WeblmageFX is inactive.
Example
<imgedit enabled="true">
imgfmt

Contains the image formats allowed in WeblmageFX. WeblmageFX only supports
the following graphic file formats: .gif, .jpg, and .png. If you add an unsupported
format, it is ignored.

See Also: "Specifying Image Format” on page 523

This element’s values are checked when a user creates a new image or tries to

convert an existing image’s format.

Element Hierarchy

<imgedit>
<operations>
<valformats>
<imgfmt>
Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
Example
<valformats enabled="true">
<imgfmt>image/gif</imgfmt>
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>
</valformats>
namechange

Determines whether or not the user can change the name of an image file. You
would not want to allow this if, for example, changing a file’s name might break

existing links to it.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 517

WeblmageFX

Effect of Setting Namechange to False

If namechange is set to false, and the user clicks Save As from the File menu,
the following dialog appears.

Save As |

JPEG Files [pg.* Ipeq.” o
PHG Files [* prgll*. prig

k. Cancel

Note that this dialog differs from the normal Save as dialog in the following ways:

® you cannot select a name

® you cannot select a folder

Element Hierarchy

<imgedit>
<operations>
<namechange>
Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
allow Boolean true If this value is false, the user cannot
change the name of a file being edited.
Example
<namechange allow=""true"/>
operations

Wraps the section that contains the feature settings.

Element Hierarchy

<imgedit>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 518

WeblmageFX

Attributes

<operations>

Name

Attribute Type

Default

Description

enabled

Boolean

true

Signals whether this set of data is

enabled. If false, all data within the tag is

ignored.

Example

valformats

<operations>

<valformats enabled=""true">
<imgfmt>image/gif</imgfmt>
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>

</valformats>

<imgcreate allow=
<fmtchange allow=

“true"/>
"true''/>

<namechange allow="true"/>
<command name="‘cmdtext'>
<image key=""imagetext" />
<caption localeRef="btnText" />
<tooltiptext localeRef="cmdText" />
</command>

</operations>

Contains the list of graphic file formats considered valid by WeblmageFX. This tag

consists of a series of 'imgfmt' tags.
See Also: "imgfmt” on page 517

Element Hierarchy

<imgedit>

<operations>
<valformats>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

519

WeblmageFX

Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
Example

<valformats enabled="true">
<imgfmt>image/gif</imgfmt>
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>
</valformats>

valoutformats

Lets you determine the valid output graphic file formats. If a graphic file format is
not listed between these tags, the user cannot save the image in that format.

This tag consists of a series of 'imgfmt’ tags. See Also: "imgfmt” on page 517

How the valoutformats Element is Used

This element may affect the list of choices in the Save As dialog (illustrated

below).

See Also: "Effect of Setting Namechange to False” on page 518

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 520

WeblmageFX

Save Image As

Save in: I 3 Temp

= o« &k E-

[1_ISTMP1.DIR (1 {4238080 Bef5-4bb0- 5704 67 9047
"1 ISTMP2DIR (01 {50422229-3929-4713-0575-29907 71
1 _ISTMPADIR [{598 5E 97F-BR41 401 3-823F-70F59:
["1_ISTHMP4.DIR [C1{31B11550 -CEBA-447C-BER2-AE 211
"1 _ISTMPE.DIR (C1 {96CES91 2-04B6-4258 B 243-5C430
1 _ISTMP7.0IR [{aBhal 4e0-7384-11 d4-hae7-004096:

" 1{13359210B-94D 8-41 C5-B 37 3-EFI2BE 1EFB21}
"1 {32400738-9560-4B20-990 201 7394241618}
"1 {4290 5466-284C-42C0-BFC1-8500BBE 41198} [{chBal c2a-dbB4-452F 830071271 ol

(C1{B35CIF00-01 C2-4F0D-AC25-B 7446
(1 {b4dSedcE-d3eE-4ed7-B05d-6e0d4(C

[« | =

File name: JwiF20E3 = | sae |

Save as hpe: j Cancel |
Z

This element is only used if fmtchange = true. See Also: "fmtchange” on

page 515

Element Hierarchy

<imgedit>
<operations>
<valoutformats>
Attributes
Name Attribute Type Default Description
enabled Boolean true Signals whether this set of data is
enabled. If false, all data within the tag is
ignored.
Example

<valoutformats enabled="true">
<imgfmt>image/jpg</imgfmt>
<imgfmt>image/png</imgfmt>

</valoutformats>

Image Names

An image file can have two names:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 521

WeblmageFX

® aremote name, such as . ./images/me.png

® atemporary file name, such as c:\temp\me.png

The name passed between the client application and the feature is assigned
when the file is first loaded. The assigned name may or may not match the name
of the file under which it is saved.

The assigned name is the key that is assigned to the image and references the
file being edited. This name may not match the name under which the file is
saved.

The assigned name remains constant throughout the editing session for that
image, even if the file is saved to a different name. Events and methods will
provide this name along with the actual save path and file name.

Here are some examples.
Example 1: Local file is edited then saved locally

loaded file name c:\images\me.png
temporary file name c:\images\me.png
saved file name c:\images\me.png

Example 2: File stored at a URL is saved locally

loaded file name http://www.yahoo.com/images/
me.png
temporary file name C:\Documents and

Settings\username\Local
Settings\Temp\me.png

saved file name c:\windows\temp\me.png

Example 3: File stored in relative path on server is saved locally

loaded file name ../images/me.png

temporary file name C:\Documents and
Settings\username\Local
Settings\Temp\me.png

saved file name c:\windows\temp\me.png

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 522

WeblmageFX

Specifying Image Format

WeblmageFX uses the internet standard for specifying a graphic file format. This
format allows for easy interchange with HTML and XML. The format is a string
composed as follows:

® image
® aslash (/)
® the format designation

Here are some examples:

image/giT - the Graphics Interchange format

NoTE Due to licensing issues required of customers and their clients, the GIF format is
only supported for a read operation. If a GIF file is modified, it saved in the PNG
format.

image/jpg - the JFIF compliant format

image/png - the Portable Network Graphics format

Separate each file format with a comma. So, a list of formats would look like this:
image/gif, image/jpg, image/png

NOTE The imgformat element of the configuration data determines which graphic file
formats can be used in your system. See Also: "imgfmt” on page 517

Specifying Color Depth

To specify an image’s color depth (that is, the number of colors available to the
image), specify a bit depth. The color depth is derived from the bit depth.

Here are the bit depth values.

Bit depth Color depth
1 2 colors

4 16 colors

8 256 colors

24 16M colors

Methods to Manipulate WeblmageFX

The table below contains all methods available to manipulate WeblmageFX.
Following the table is a detailed description of each method.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 523

WeblmageFX

The table’s columns indicate which methods are available to the client and the
server. As you can see, all methods are available via the user interface, but only
some can be executed programatically on the server.

NOTE If you want to process images on the server, its operating system must be
Windows NT Server, Windows 2000 Server, or Windows XP Server.

Method Client Server For more
function function information,
see page
AskOpenFile X 46
AskSaveAs X 47
AskSelectColor X 47
Convertimage X X 52
CreateNew X X 54
EditFile X X 55
EditFromHTML X 56
EnableCreation X 57
EnableFormatChange X 57
EnableNameChange X 58
ErrorClear X X 59
ErrorDescription X X 59
ErrorValue X X 60
ExecCommand X 61
Getlmagelnformation X X 69
GetValidFormats X 73
ImageEditor X 74

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 524

WeblmageFX

Method Client Server For more
function function information,
see page
IsDirty X 76
IsPresent X 78
IsVisible X 79
LoadedFileName X 83
PublishHTML X 87
Save X X 92
SaveAs X X 92
SavedFileName X 93
SetConfig X 94
SetlLocale X 99
SetValidFormats X 100
Thumbnail X X 102

Events to Manipulate WeblmageFX

Events are called by WeblmageFX into a client script, which defines how to
accept an event from WeblmageFX. As a result, when something happens in
WeblmageFX, it calls the event. The client script receives this call and can react
to the notification.

The table below contains all events available to WeblmageFX. Following the table
is a detailed description of each event.

All events are available on the client only - none is available on the server.

Event For more
information,
see page

EditCommandComplete 144

EditCommandsStart 145

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 525

WeblmageFX

Event For more
information,
see page

EditComplete 145

ImageError 146

Loadinglmage 146

Savinglmage 147

Commands Unique to WeblmageFX

The following commands are available within WeblmageFX’s configuration data.
See Also: "Commands” on page 157

Command Name Function

cmdblur Blurs or softens an image

cmdbrightness Changes an image’s brightness

cmdchoosecolor Assigns color of annotation before user inserts it
cmdchoosefont Assigns color of text before user inserts it

cmdcolordepth Changes the number of colors available to an image
cmdcontrast Changes the difference between light and dark areas of an image
cmdcopy Copies selected text into the copy buffer

cmdcreatenew Creates a new image

cmdcrop Removes everything outside the selected area of an image
cmddelete Deletes selected area of an image

cmddimensions Lets the user modify an image’s width and height
cmddelete Deletes selected text

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 526

WeblmageFX

Command Name

Function

cmdexit The edited file is saved, WeblmageFX closes, and eWebEditPro reappears
with the edited image.

cmdfreehand Draws a line in any shape that the user wants.
See Also: "The IData Parameter” on page 528

cmdfullview Displays image at full size

cmdhorizflip Reverses an image horizontally left to right

cmdimageinfo

Displays information about an image

cmdline Draws a straight line. See Also: "The |Data Parameter” on page 528
cmdopen Displays standard Open File dialog, which lets user select an image to edit
cmdoval Draws an oval. See Also: "The IData Parameter” on page 528
cmdpastenew Pastes the contents of the copy buffer into a new image file

cmdpointer Lets user click on an annotation to select it

cmdpolygon Draws a polygon. See Also: "The IData Parameter” on page 528

cmdrectangle

Draws a rectangle. See Also: "The IData Parameter” on page 528

cmdredo Executes the action that occurred right before the user executed cmdundo

cmdrotate Turns an image a specified number of degrees

cmdsave The first time an image is saved, this command displays the standard Save
File dialog box, which prompts the user to save the image to a selected file
location.
Subsequently, this command saves the current version of the image to that
file location.

cmdsaveas Displays the standard Save File dialog box, which prompts the user to save
the image to a selected file location

cmdselect Selects an area of an image. The user can then perform actions on the area,
such as blur and delete. See Also: "The |Data Parameter” on page 528

cmdsharpen Sharpens edges within an image

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 527

WeblmageFX

Command Name

Function

cmdtext

Inserts text onto the image. See Also: "The IData Parameter” on page 528

cmdtwainacquire

Performs a single page scan.

Before scanning, the user must select a source using the Twain Source
command.

cmdtwainsource Selects a source for acquiring an image, such as a scanner or digital camera
cmdundo Reverses the most recent command

cmdvertflip Flips an image vertically top to bottom

cmdzoomin Increases an image’s magnification

cmdzoomout Decreases an image’s magnification

The IData Parameter

Several commands are toggle commands. This means that when they are turned
on, they stay on until turned off. As examples, bold and italic are toggle
commands.

Toggle commands use the IData parameter to determine their state. If IData = 0,
the command is turned off. If IData is non-zero, it is turned on.

The following commands use the IData parameter.

cmdfreehand
cmdline
cmdoval
cmdpolygon
cmdrectangle
cmdselect

cmdtext

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 528

Client Script Interface for Automatic File UploadWeblmageFX

Client Script Interface for Automatic
File Upload

This section describes the API that lets client scripts control the automatic upload
of image files in WeblmageFX.

Initializing the Automatic Upload

The Automatic Upload is configured in the WeblmageFX configuration.
Specifically, the transport and autoupload elements in the configuration
determine how the feature functions when the editor first loads into a Web page.

As the page processes its information, you may want it to modify or activate items
in the upload functionality. The Automatic File Upload interface provides the
methods and properties to let you do this.

Interface Retrieval

To retrieve the interface that controls the upload functionality, use the core
JavaScript's instances object array.

var objEditor = WeblmageFX. instances[g_sEditorName];
var objAutoUpload = objEditor.editor.AutomaticUpload();

Then, access the functionality through this object interface.

objAutoUpload.setProperty(*'TransferMethod", sTransferMethod);
objAutoUpload.AddFileForUpload(sMyFileName, sMyDescription);
objAutoUpload.AddNamedData(sMyFileName, '‘username'™, sMyUserName);

Use the following command mechanism to initiate the upload. It confirms the
upload with the user and sends each file to the server.

WeblImageFX. instances[g_sEditorName].editor.ExecCommand(*'cmdmfuuploadall', ", 0);

Properties
The configuration data initially sets all property values. You only need to modify
them to change how the startup configuration operates.
AllowUpload
See "Property: AllowUpload” on page 110
WebRoot

See "Property: WebRoot” on page 109

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 529

Client Script Interface for Automatic File UploadWeblmageFX

ValidExtensions
See "Property: ValidExtensions” on page 109

TransferRoot
See "Property: TransferRoot” on page 109

Port
See "Property: Port” on page 111

LoginRequired
See "Property: LoginRequired” on page 109

LoginName

See "Property: LoginName” on page 116
Password

See "Property: Password” on page 109
TransferMethod

See "Property: TransferMethod” on page 119
ServerName

See "Property: ServerName” on page 108

Methods

GetFileDescription(FileName)

Description

Returns the description of the specified file. If the file does not exist, the return
value is an empty string.

Return Type
String
Parameters

FileName - The file name which has the returned description applied to it.

SetFileDescription(FileName, Description)
See "Method: SetFileDescription” on page 97

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 530

Client Script Interface for Automatic File UploadWeblmageFX

ReadResponseHeader()
See "Method: ReadResponseHeader” on page 88

AddNamedData(FileName, DataName, DataValue)
See "Method: AddNamedData” on page 46

ReadNamedData(FileName, DataName)
See "Method: ReadNamedData” on page 88

RemoveNamedData(FileName, DataName)
See "Method: RemoveNamedData” on page 91

GetFileStatus(FileName)
See "Method: GetFileStatus” on page 68

SetFileStatus(FileName, Status)
See "Method: SetFileStatus” on page 97

ReadUploadResponse()
See "Method: ReadUploadResponse” on page 89

UploadConfirmMsg(Message, Title)
See "Method: UploadConfirmMsg” on page 105

SetFieldValue(DataName, DataValue)
See "Method: SetFieldValue” on page 96

GetFieldValue(DataName)
See "Method: GetFieldValue” on page 66

RemoveFieldValue(DataName)
See "Method: RemoveFieldValue” on page 90

AddFileForUpload(LocalFileName, Description)
See "Method: AddFileForUpload” on page 43

ListFilesWithStatus(Status, Delim)

Description

Returns a delimited list of all files with the specified status.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 531

Client Script Interface for Automatic File UploadWeblmageFX

Return Type
String
Parameters

Status - The status to use to retrieve the files. A status can be a combination of
many status values, so the status is returned as bits set in a long value.

Delim - The delimiter to use between file entries in the returned string.

RemoveFileForUpload(LocalFileName)
See "Method: RemoveFileForUpload” on page 90

Property Setting Methods
Under some versions of Netscape, the properties cannot be accessed directly. To
circumvent this problem, you can use the following methods to ensure that the
properties can be set from all browsers. These standard methods are included
with all objects in the Ektron family of editors.
® "Method: setProperty” on page 99
® "Method: getProperty” on page 71
® "Method: getPropertyString” on page 71
® getPropertylnteger(Name As String) As Long

® "Method: getPropertyBoolean” on page 71

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 532

Integrating eWebEditPro

NOTE If eWebEditPro is used on a platform (that is, a browser or operating system) that
does not support eWebEditPro, a textarea field automatically appears in its
place. No extra work is required to handle unsupported platforms.

This section explains how to integrate eWebEditPro in the following
environments.

® ASP.NET

e ASP

® ColdFusion

e ISP

® PHP

Regardless of your server environment, you can always integrate eWebEditPro

using JavaScript. “Integrating eWebEditPro Using JavaScript” on page 564
explains how to do that.

Each section provides step-by-step instructions for integrating eWebEditPro in
that environment. Documentation is also provided for the samples supplied.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 533

Integrating eWebEditPro with ASP

Integrating eWebEditPro with ASP

Using the Sample Pages

When you download eWebEditPro, Ektron provides sample pages that include
the editor. The pages are located below the folder to which you installed
eWebEditPro. The default location is
C:\Inetpub\wwwroot\ewebeditpro5\samples\asp.

You should copy these samples to another directory or rename them, and then
modify them as needed for your users. If you do not copy them, any changes you
make could be overwritten when you reinstall or upgrade eWebEditPro.

Creating Your Own Page

If you want to create a new ASP page and place eWebEditPro on that page, the
page needs to include these actions.

1. Include the ewebeditpro.asp file.

2. Setup aform.

3. Place the editor on the form.

4. Add a submit button.

The rest of this section explains how to complete these tasks.

Including a Reference to ewebeditpro.asp

NoOTE

Your ASP page must include a reference to the ewebeditpro.asp file. You can use
a relative or an absolute path. Ektron recommends using an absolute path.

You must place the #Include line within the page’s head tags.

For a relative path, follow the include command with file. For an absolute path,
follow the include command with virtual.

Entering a Relative Path

Use this syntax to indicate a relative path to the domain name of this file.

<head>
<l-- #Include file="_._/._/._./ewebeditpro.asp” -->
</head>

Entering an Absolute Path

Use this syntax to indicate an absolute path to the domain name of this file.

<head>
<l-- #Include virtual="/ewebeditpro5/ewebeditpro.asp" -->
</head>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 534

Integrating eWebEditPro with ASP

Setting Up a Form

Placing the Editor

EE Y IR A L 1=

When setting up a form, follow these steps.

1. Enter a URL as the action. This defines the page that manipulates the user’s
input when the user clicks the submit button.

2. Enter Post as the method.
Here is a sample form declaration.
<form action="multiedit.asp?preview" method="POST">

on the Form
Place the editor within the form tags. You can place the editor as a
® box whose width and height you specify, or

® button that, when clicked, displays a new screen with the editor

This illustration depicts the editor as a box.

= RRIE=ERIESE

|| 2 eep sty

* Mormal = Timez Hew Roman, * = Jansp 28 T €_ i =

-

Thig 15 mutal content.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 535

Integrating eWebEditPro with ASP

This illustration depicts it as a button.

Y eWebEditPro - Microzoft Intemnet Explorer

J File Edit “iew Favortes Toolz Help |

J <aBack ~ = - (@) fat | ‘@ Search [3] Favorites &4 Histary ||%v = oo~

Enter some text: ISampIe tend Editl AI

For each editor that you want to place on the web page, you
® change parameter values as needed

® nsert the editor

Changing Parameter Values

If you want to change parameters that affect all instances of the editor, edit the
ewebeditprodefaults.js file. You can use a standard text editor such as Notepad.

(For a description of each parameter, see “Customizable JavaScript Files” on
page 227.)

To change parameters only for the instance of eWebEditPro you are placing on
the page, enter the following code. In this example, you edit the parameters to
display the About button (/) on the toolbar.

<script language="JavaScript'>

eWebEditPro.parameters.reset();

eWebEditPro.parameters.hideAboutButton="False";
</script>

If you are placing more than one editor on a page, and you want the parameters
for each editor to be different, begin the parameter code with
eWebEditPro.parameters.reset(). This line restores the parameters to
the default values set in ewebeditprodefaults.js.

Inserting the Editor as a Box

To place the editor as a box on an ASP page, enter a line with the following
elements within the form.

<% =eWebEditProEditor(""field name'", width, height, initial content) %>

Argument Description

field name Enter the name of the field that stores content within
quotes (" "). It does not matter what the name is, but the
field name on the page that retrieves the content must
match this name.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 536

Integrating eWebEditPro with ASP

Argument Description

width, Enter the width and height of the editor in percent or
height pixels.

® |f a percent, enclose the value in quotes (““) and fol-
low it with a percent sign (%), for example “50%" .

® |f pixels, quotes are optional, for example, 500.

initial If you want some text to appear in the editor the first
content time a user views it, you can enter text or a variable that
contains the text.

® To enter text, enclose it within quotes ().

® To enter a variable, define it elsewhere in the file.

Here is an example of a line that calls the editor. In this example, the initial content
is defined in the variable strContentl, which is defined elsewhere in the file.

<% =eWebEditProEditor("'TextHTML1", "100%", 250, strContentl) %>

Inserting the Editor as a Button

Entering a Field

To place the editor as a button on an ASP page, enter within the form
@ afield into which the user enters the content

® the button

Enter a text area box, a text input field, or a hidden field that submits the content
to the database.

Here is a typical text area field.

<textarea name ="textl” rows=20 cols=120>
sample text
</textarea>

Here is a typical text input field declaration, preceded by text that instructs the
user what to do.

Enter some text: <input type="text" size=70 name="textl" value="Sample text'>

Entering the Button

To add the button to the page, enter a line with the following elements.
<% =eWebEditProPopupButton(*'button name', "text field name') %>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 537

Integrating eWebEditPro with ASP

Argument

Description

button name

Assign the button any name you wish.

field name

Enter the name of the field that stores content within

quotes (“ “).The field name must match the field named

in the text input field declaration.

Here is a typical button declaration.
<% =eWebEditProPopupButton(*'btnEditTextl", "textl') %>

NOTE To edit the button text, open the ewebeditpromessages.js file using a standard
text editor such as Notepad. Within that file, edit the text within quotes that follows
popupButtonCaption:.

Adding a Submit Button

Add a standard HTML submit button that allows the user to send the content to
the Web server. Here is an example of a line that contains a submit button.

<input type="'submit" name="btnSubmit" value="Preview">

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

538

Integrating eWebEditPro with ASP.NET

Integrating eWebEditPro with ASP.NET

Using the Sample Pages

When you download eWebEditPro, Ektron provides sample pages that include
the editor. The pages are located below the folder to which you installed
eWebEditPro. The default location is
C:\Inetpub\wwwroot\ewebeditpro5\samples\aspnet.

You should copy these samples to another directory or rename them, and then
modify them as needed for your users. If you do not copy them, any changes you
make could be overwritten when you reinstall or upgrade eWebEditPro.

Integrating eWebEditPro on an ASP.NET Page

There are three ways to place eWebEditPro on an ASP.NET page. Each
technique is described below with its advantages. Ektron supplies sample code
for each one.

Technique Description For more information,
see

Using a This is most similar to ASP programming. You call a “Using a Function” on

function Visual Basic function from your ASPX page. page 540

If you are migrating from ASP to ASP.NET and want to
get it running quickly, you may want to start with this

approach.
Using a You add a custom tag to your ASPX page as you might “Using a Custom User
custom user any HTML control in ASP.NET. Control” on page 541
control Although simple, this technique does not let you fully

separate your code from the page’s presentation and
layout. Use this method if you do not need to use the
code-behind concept.

Using a This is the most complex. When using it, you must “Using a Custom Server
custom reference the ewebEditPro server control in your Control” on page 543
server control ASP.NET project in VisualStudio.NET.

The server control supports the code-behind concept
that lets you separate your code from the page’s layout
and presentation. Use this technique if you want to use
the code-behind concept. It can be used with Visual
Basic, C#, or any other .NET language.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 539

Integrating eWebEditPro with ASP.NET

Using a Function

Ektron provides sample code to simplify the integration of eWebEditPro with
Microsoft ASP.NET. You can insert eWebEditPro into an ASP.NET page just as
easily as you can insert a text area field into an HTML page.

To insert eWebEditPro into an ASP.NET page using the ASP function, follow
these steps.

1. Include a reference to ewebeditpro.aspx.
2. Setup aform.

3. Place the editor on the form.

4. Add a submit button.

Including a Reference to ewebeditpro.aspx

1. To include a reference to ewebeditpro.aspx, place the #1nclude line within the
page’s head tags. Ektron recommends using an absolute path. To indicate an
absolute path, use this syntax:

<head>
<I-- #Include virtual="/ewebeditpro5/ewebeditpro.aspx" -->
</head>

Setting up a Form

Here is a sample form declaration. (Be sure to enter post as the method.)

<form id="Forml" method="post" runat="server'>
Placing the Editor on the Form

To place the editor on an ASP page, enter a line with the following elements within
the form tags:

<% =eWebEditProEditor("'field name'", width, height, initial content) %>

Argument Description

Field name Enter the name of the field that stores content within
quotes (*). It does not matter what the name is, but the
field name on the page that retrieves the content must
match this name.

Width, Enter the width and height of the editor in percent or
Height pixels. If a percent, enclose the value in quotes (**) and
follow it with a percent sign (%), for example “50%". If
pixels, quotes are optional, for example, 500.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 540

Integrating eWebEditPro with ASP.NET

Argument

Description

Initial
content

If you want some text to appear in the editor the first
time a user views it, you can enter text or a variable that
contains the text. To enter text, enclose it within quotes
(““). To enter a variable, define it elsewhere in the file.

Here is an example of a line that calls the editor: (In this example, the initial
content is defined in the variable strContentl, found elsewhere in the file).

<% =eWebEditProEditor("'TextHTML1", *100%", 250, strContentl) %>

Adding a Submit Button

Add a standard HTML submit button that allows the user to send the content to
the Web server after entering it. Here is an example of a line that contains a

submit button:

<input type="'submit' name="btnSubmit" value="Preview'>

or, add an ASP.NET button

<asp:Button id="btnSubmit" runat="'server" Text= '"Preview'></asp:Button>

Using a Custom User Control

If you want to create a new ASP.NET page and place eWebEditPro on that page
as a custom user control, follow these steps.

Set up a form.

o~ w DN PRE

Register the control file, ewebeditpro.ascx.

Place the editor on the form.
Add a submit button.
Gain access to the posted content.

The rest of this section explains how to complete these tasks.

Register the Control File ewebeditpro.ascx

Your ASP.NET (aspx) page must register the ewebeditpro.ascx user control file.
To accomplish this, insert the <%@ Register tag at the top of your aspx page.

<%@ Register TagPrefix="ewep" TagName="eWebEditProEditor" src="/ewebeditpro5/ewebeditpro.ascx" %>

® TagPrefix determines a unique namespace for the user control

® TagName is the unique name for the user control

® The src attribute is the virtual path to the user control, for example **../._/
ewebeditpro.ascx" or ""/ewebeditpro5/ewebeditpro.ascx"

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 541

Integrating eWebEditPro with ASP.NET

Setting up a Form

Here is a sample form declaration. Be sure to enter post as the method.

<form id="Forml" method="post" runat="server">

Place the Editor on the Form

Place the user control tag in the Web Form page just as you would an ordinary
server control (including the runat=""server" attribute). To place the editor on a
Web Form, enter a line with the following elements within the form tags.

<ewep:eWebEditProEditor id="TextHTML1" runat="'server" height="250" width="100%" Text=
"initialcontent'></ewep:eWebEditProEditor>

Attribute Description

id Enter a unique name for each editor, for example MyEditor1,
MyEditor2.

width, Enter the width and height of the editor in percent or pixels.

height Enclose the value in quotes (*). If a percent, follow it with a

percent sign (%), for example “50%?”". If pixels, just enclose the
value in quotes, for example, “500".

Text If you want text to appear in the editor the first time a user views
it, enclose the text within quotes (**).

To dynamically pass content, set the property using a server-side
script. For example, TextHTML1.Text = "initial
content", where TextHTML1 is the id of the user control.

Here is an example.

<script language="VB" runat='"server'>
Sub Page_Load(Sender As Object, E As EventArgs)
IT (Page.lsPostBack)
TextHTML1.Text = Request.Form(*'TextHTML1"™)
TextHTML2 . Text Request.Form("'TextHTML2")
Else
TextHTML1.Text
TextHTML2.Text
End IFf
End Sub
</script>

“<p>Initial content 1</p>"
"<p>Initial content 2</p>"

Here is an example that inserts two editors.

<ewep:eWebEditProEditor id="TextHTML1" runat="'server' height="250" width="100%" Text="Editor
1"></ewep:eWebEditProEditor>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 542

Integrating eWebEditPro with ASP.NET

<ewep:eWebEditProEditor id="TextHTML2" runat="'server' height="250" width="750" Text="Editor
2'"></ewep:eWebEditProEditor>

You can also set the content using TextHTML1 . Text = *'Some content' and
TextHTML2.Text = ""Some other content" in a Page_load subroutine or
some other server-side event.

Add a Submit Button

Add a standard HTML submit button that allows the user to send the content to
the Web server after entering it. Here is an example of a line that contains a
submit button.

<input type="'submit" name="btnSubmit" value="Preview'>

Or, you can add an ASP.NET button.

<asp:Button id="btnSubmit" runat="server" Text= "Preview'></asp:Button>

Gaining Access to the Posted Content

When posting to an action page, you have access to the posted content via
Request._Form(*'TextHTML1'""), where TextHTMLL1 is the id of the user control.

<script language="VB" runat="server'>
Sub Page_Load(Sender As Object, E As EventArgs)
I (Page.lsPostBack)
TextHTML1.Text = Request.Form("'TextHTML1'™)
TextHTML2.Text = Request.Form(*'TextHTML2"™)
End If
End Sub
</script>

Using a Custom Server Control

If you want to create a new ASP.NET page and place eWebEditPro on that page
as a custom server control, follow these steps.

1. Open Microsoft Visual Studio.NET.

2. Select Toolbox, then right click the mouse and select Customize Toolbox.
(See illustration below.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 543

Integrating eWebEditPro with ASP.NET

32 WwWebapplicationl - Microsoft Yisual Basic .NET [design] -

Start Page

Cuf
Copy
Paste
Delete

Rename Item

Add Tab

3. The Customize Toolbox dialog appears. Click .NET Framework
Components. (See illustration below.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 544

Integrating eWebEditPro with ASP.NET

Customize Toolbox ! x|

O Cnmpnnents[\MET Framewark Components D

Marme | Mamespace | Assembly Mame | I;l
O apooc Microsoft WisualBasic. Comp... Microsoft, VisualBasic, Compatibility, Dat. . n—l
O apcDcarray Micrasoft. isualBasic. Comp... Microsaft, VisualBasic, Compatibiliey, Dat,..
AdRotator Sysbem.Web UL webZontrols System.web (1.0,3300.0) 1
[assemblyInstalsr Systern. Configuration. Install System, Configuration. Install (1.0,3300..,
Button Sysbem, Windows,Forms System, Windows, Forms {1,0,3300,00 1
Button System.\Web, UL WebControls System.Web (1.0,3300.0) 1
O euttonarray Microsoft WisualBasic. Comp... Microsoft, VisualBasic, Compatibility (7.0...
Calendar System.\Web, UL WebControls System.Web (1.0,3300.0) 1
CheckBox Sysbem, Windows,Forms System, Windows, Forms {1,0,3300,00 1
CheckBox System.\Web, UL WebControls System.Web (1.0,3300.0) [
:—I.-. [P e - e .HI. - it
—ErrorPravider
o Language: Invariant Language (Invariant Country)
Wersion, 1.0.3300.0 (Retail)

a4 I Cancel | Reset | Help |

4. Browse to your program files directory then select Ektron/ewebeditpro5/
eWebEditProNet.dll. (See illustration below.)

tookin: (] eWwebEditProd x| e~
ewvebSchemastored . dil

&

Favarites
=
:I.I‘—T" File narne: I
My Metwark
Places Files of bype: IExecutabIes . dl; * exe)

5. The file appears among the files in the Customize Toolbox dialog. Click OK.
6. Notice that the .dll file is now in the toolbox. (See illustration below.)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 545

Integrating eWebEditPro with ASP.NET

3% Webapplicationl - Microsoft Yisual Basic

File Edit Miew Project Build Debug |
B-a-sdd@ s B2R|o
Elm| & [& .

| Toolbox o=
Data
Wi'eb Forms

|
|
Components |
|
|

|

Clipboard Ring
HTML

Genetal | ﬂ

| k Pointer

(@ e'\WebEditPraCantral]

Drag and drop the eWebEditPro control file into your form.

Enlarge the size of the control file. (See illustration below.)

9. Write the code-behind code to access the content. Here is an example.
private void Page_Load(object sender, System._EventArgs e)

{

// Put user code to initialize the page here
EWebEditProControll.Text = "This is an initial content.";

}

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 546

Integrating eWebEditPro with ASP.NET

Validator Control Support

The server control supports validation using ASP.NET validation controls. The
ASP.NET validation controls include RequiredFieldValidator, CompareValidator,
RangeValidator, RegularExpressionValidator, and CustomValidator.

Customizing eWebEditPro Parameters

eWebEditPro exposes the properties of the eWebEditPro.parameters object to
the code-behind (for example, C#) on the server. As a result, you can set
parameters using values known only on the server. The parameters object in the
eWebEditPro server control renders the JavaScript needed to set parameter
values on the client side.

The eWebEditPro placeholder control's properties appear in the
VisualStudio.NET Properties dialog.

NOTE Some properties and methods do not apply to eWebEditPro. This is because the
eWebEditPro placeholder control is derived from
Microsoft.ContentManagement.WebControls.BasePlaceholderControl, which is
derived from the ASP.NET WebControl class.

Editing the Properties of the eWebEditPro Placeholder

To modify properties and methods of an instance of the eWebEditPro editor,
follow these steps.

1. Select the eWebEditPro placeholder.
2. Right click the mouse and select Properties.

=]

Wiew HTML Source

wepd]

Cut

Capy

B0y <

Paste

Paste as HTML

¥ Delete

Build Skyle, ..

led

Yiew in Browser

Wiew Client Scripk

Wi Code

Synchronize Document St

3. The Properties dialog appears.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 547

Integrating eWebEditPro with ASP.NET

| MCMS Templake Explorer - localhost @ bbalk B | Propertics

| | E. | Hf_‘| ﬁﬁ IEWEbEditPrnPIacehnlderlI etebEditProCar

@ Parther Services A5 P, ;I E: @" 7 |

=10 About Us Net BaseLRL
: EI Job Posting A5P BodyStyle
J Charset
Canfig
EditorGetMethod
Enableautharing True
L Enableviswstate True
HtmlPlaceholderControl - Height 300px
Flaceholderhtrmlcontrols HideAboutButtan False
[ContactInfarmation] License
Locale
= MaxiCantentSize £5000
eWebEditProPlaceholder - parameters eWWebEditPral
al 2icbiEal el PlaceholderToBind MewXmiPlal
[MewxmlPlacehaolderDefinition1] PreferredType
:[EI = Iy Readionly False
UserControl - Title
FooterPressRelease Wisible True
width 600px

4. You can edit the following properties. For documentation of the properties,
refer to the eWebEditPro Developer’s Reference Guide (see the chapters
“JavaScript Objects” and “Activex Control”).

NOTE Unless stated otherwise, each parameter is of type 'string'. If a parameter is not
set, the value assigned in ewebeditprodefaults.js is used to create the editor.

® "Property: BaseURL” on page 112

® "Property: bodyStyle” on page 121

® "Property: CharSet” on page 122

® "Property: Config” on page 122

® "Property: editorGetMethod” on page 144

® "Property: hideAboutButton” on page 124 (boolean)
® "Method: isChanged” on page 75

® "Property: License” on page 124

® "Property: Locale” on page 124

® "Property: maxContentSize” on page 130

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 548

Integrating eWebEditPro with ASP.NET

® "Property: preferredType” on page 131

® "Property: ReadOnly” on page 124 (boolean)
® "Property: Title” on page 125

® "Property: xmlinfo” on page 126

® parameters - see Parameters Object, below
Parameters Object Property

You can use the parameters object property to define
® parameters on the following list that do not appear on the above list

® parameters on the above list that require further definition in the code behind
(for example, MyContentl._parameters.title = "My Title is: " +
strTheTitle;)

See Also: "Parameters Object” on page 7

NOTE Unless stated otherwise, each parameter is of type 'string’. If a parameter is not
set, the value assigned in ewebeditprodefaults.js is used to create the editor.

® parameters.baseURL

® parameters.bodyStyle

® parameters.buttonTag.end

® parameters.buttonTag.imageTag.alt

® parameters.buttonTag.imageTag.border (integer)
® parameters.buttonTag.imageTag.height (integer)
® parameters.buttonTag.imageTag.src

® parameters.buttonTag.imageTag.width (integer)
® parameters.buttonTag.start

® parameters.buttonTag.type (note: defaults to “imagelink”)
® parameters.buttonTag.tagAttributes

® parameters.buttonTag.value

® parameters.charset

® parameters.clientinstall

® parameters.config

® parameters.editorGetMethod

® parameters.embedAttributes

® parameters.hideAboutButton

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 549

Integrating eWebEditPro with ASP.NET

® parameters.installPopup.query

® parameters.installPopup.url

® parameters.installPopup.windowFeatures
® parameters.installPopup.windowName
® parameters.license

® parameters.locale

® parameters.maxContentSize (integer)
® parameters.objectAttributes

® parameters.onblur

® parameters.ondblclickelement

® parameters.onexeccommand

® parameters.onfocus

® parameters.popup.query

® parameters.popup.url

® parameters.popup.windowFeatures

® parameters.popup.windowName

® parameters.preferredType

® parameters.readOnly

® parameters.styleSheet (note: defaults to use the stylesheets specified on the
page)
® parameters.textareaAttributes

® parameters.title

® parameters.xmlinfo

Declaring the Schema File

eWebEditPro provides a schema file, eWebEditProNet.xsd, that provides proper
validation and Intellisense in Visual Studio .NET when in HTML view. The schema
only works if it is declared in the ASP.NET page.

To declare it, open the aspx form page, switch to HTML view, and add the
xmIns:ewepnet declaration to the body tag as shown.

<body xmlns:ewepnet=""urn:eWebEditProNet">

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 550

Integrating eWebEditPro with ColdFusion

Integrating eWebEditPro with ColdFusion

Creating Your Own Page

If you want to create a new ColdFusion page and place eWebEditPro on that
page, the page needs to include these actions.

1. Setupaform.

2. Call the eWebEditPro custom tag.

3. Add a submit button.

The rest of this section explains how to complete these tasks.

Note ColdFusion limits the results received from ODBC queries' columns to 64K for
performance reasons. It may be possible to edit ColdFusion’s settings of your
ODBC data source. Refer to your ColdFusion documentation for more
information.

Setting Up a Form

When setting up a form, follow these steps.
1. Declare a form.

2. Enter a URL as the action. This defines the page that manipulates the user’s
input when the user presses the submit button.

3. Enter Post as the method.
Here is a sample form declaration.
<form action="multiedit.cfm?preview" method="post''>

Calling the eWebEditPro Custom Tag

First Time Installation of eWebEditPro

To place the editor on a ColdFusion page, enter a call to the custom tag with the
following elements within the form.

<CF_ewebeditpro5 name, width, height, initial content>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 551

Integrating eWebEditPro with ColdFusion

Argument Description

name A name for the editor. This is the name of the element
that is sent to the server.

As of build 2.0.0.30, the CF custom tag includes the
attribute EditorName as an alternative to Name.
EditorName is needed if the CFMODULE tag is used
to instantiate editor instead of <CF_ewebeditpro5>.

Example

<cfmodule Name="ewebeditpro5"
EditorName="myContentl" Width="95%"
Height="220" Value="#initialcontent#">

width, The width and height of the editor in percent or pixels.

heigh .
elght ® |f a percent, enclose the value in quotes (““) and fol-

low it with a percent sign (%), for example “50%".

® |f pixels, quotes are optional, for example, 500.

initial If you want some text to appear in the editor the first
content time a user views it, you can enter text or a variable that
contains the text.

® To enter text, enclose it within quotes ().

® To enter a variable, define it elsewhere in the file.

Here is an example of a line that calls the custom tag.

<CF_ewebeditpro5 Name= "Editorl" Width="100%" Height="555" Value= "#initial_content#" >
In this example, the initial content is defined in the variable initial_content,
which is defined elsewhere in the file.

You can change ColdFusion custom tag attributes if you want this instance of the
editor to be different from the standard. For more information, see "eWebEditPro’s
Custom Tag” on page 553.

Adding a Submit Button

Add a standard HTML submit button that allows the user to send the content to
the Web server after entering it. Here is an example of a line that contains a
submit button.

<input type="'submit" name="btnSubmit" value="'Submit">

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 552

Integrating eWebEditPro with ColdFusion

NOTE If you create JavaScript to submit the form (instead of the input declaration
illustrated above), you must include an eWebEditPro.save function prior to the
submit function. For example
<script.

eWebEditPro.save()
myform.submit()
</script>

eWebEditPro’s Custom Tag

When you install eWebEditPro, a ColdFusion custom tag file (ewebeditpro5.cfm)
is placed in the CFUSION/Custom Tags folder on the server. This section
describes each attribute in the custom tag.

NOTE If your host does not allow custom tags to be placed in the CustomTags file, use
the EditorName attribute, explained below.

Custom Tag Attributes

The attributes in the custom tag determine many of the key eWebEditPro
settings, such as maximum content size, editor name and the directory where
eWebEditPro resides.

Many of these attributes are also stored in eWebEditPro files, such as
ewebeditpro.js and ewebeditprodefaults.js. If the same attribute appears in both
ewebeditpro5.cfm and an eWebEditPro file, the value in the ewebeditpro5.cfm
file takes precedence over that value in the other file.

Attribute Description

Path Specifies the path to the directory to which ewebEditPro is
installed. By default, this attribute is set to /ewebeditpro5/

MaxContentSize The largest number of characters that can be saved in the
editor window. If a user enters content that exceeds this size,
an error message appears.

For more information see “Property: maxContentSize” on
page 130.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 553

Integrating eWebEditPro with ColdFusion

Attribute

Description

Name

The name of the ewebEditPro editor. The name should be a
valid JavaScript identifier, so should follow these guidelines.

® |t consists of only ASCII letters and digits, underscores
() and dollar signs ($).

® The first character cannot be a digit.

® Spaces are not permitted.

See Also: EditorName attribute

EditorName

An alternative to Name. This is needed if the CFMODULE tag
is used to instantiate the editor instead of
<CF_ewebeditpro5>.

For example:

<cfmodule Name="ewebeditpro5"
EditorName="myContentl" Width="95%" Height='"220"
Value=""#variables.editorl#">

Why CFMODULE is used to instantiate editor

Many hosts do not allow new custom tags to be placed in the
ColdFusion CustomTags directory. To work around this
problem, place the tag in another directory and call it using
<cfmodule template="taglocation/tagname">.

Width

The width of the editor in pixels or a percent. For example,
700 or “100%".

Height

The height of the editor in pixels or a percent. For example,
400 or “100%".

Value

If you want some text to appear in the editor the first time a
user views it, you can enter text or a variable that contains the
text.

® To enter text, enclose it within quotes ().

® To enter a variable, define it elsewhere in the file.

License

The license keys of the editor. Separate each with a comma.

Ektron provides these keys after purchase. For development
purposes, the license keys for 127.0.0.1and localhost are
built into the editor.

Note: ewebEditPro displays an Invalid License message if
the license key is improperly entered.

See Also: The “License Keys” chapter of the ewebEditPro
and eWebEditPro+XML installation manual.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 554

Integrating eWebEditPro with ColdFusion

Attribute

Description

Locale

The URL of the localization directory or file, or the locale data
itself.

For more information, see “Modifying the Language of
eWebEditPro” on page 201.

Config

Either the URL of the config XML data or the configuration
data itself. Although this ActiveX control property can contain
the XML content, it typically refers to an XML file. (For details,
see “Managing the Configuration Data” on page 251.)

StyleSheet

Which style sheet file (CSS) to apply to the editor content.
For more details, see “Style Sheets” on page 367.

BodyStyle

Set cascading style sheet (CSS) attribute values, such as
background color, default font style, size, color and more. The
BodyStyle parameter sets any valid CSS style supported by
your browser.

For more information, see "The Parameters Object” on
page 242.

HideAbout
Button

Set to "True" to remove the About ('e) button from the
toolbar.

WDDX

Available for compatibility with Release 1.8.

onDbIClickElement

Double-clicking on a hyperlink, applet, object, image, or table
causes this event to fire. Review the ewebeditproevents.js file
for an example of how to respond to this event.

See Also: “Event: ondbiclickelement” on page 148.

onExecCommand

The ActiveX control raises the onexeccommand after a
toolbar button is pressed, a toolbar drop-down menu item is
selected, or a context menu (right-click menu) item is
selected.

See Also: “Event: onexeccommand” on page 148.

onfocus()

An event that fires when the editor gains the focus. onfocus is
a standard DHTML event.

For details, see "Event: onfocus” on page 148.

onblur()

An event that fires when the editor loses the focus. onblur is a
standard DHTML event.

For details, see "Event: onblur” on page 149.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 555

Integrating eWebEditPro with ColdFusion

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 556

Integrating eWebEditPro with JSP

Using the Sample Pages

When you download eWebEditPro, Ektron provides sample pages that
include the editor. The default location is www . mywebsite.com/
ewebeditpro5/samples/jsp.-

You should copy these samples to another directory or rename them, and
then modify them as needed. If you do not copy them, any changes you make
could be overwritten when you reinstall or upgrade eWebEditPro.

Creating Your Own Page

If you want to create a new JSP page and place eWebEditPro on that page,
the page needs to include these actions.

1. Include the ewebeditpro.jsp file.

2. Setup aform.

3. Place the editor on the form.

4. Add a submit button.

The rest of this section explains how to complete these tasks.

Including a Reference to ewebeditpro.jsp

Your JSP page must contain an include command that specifies a relative
path to the ewebeditpro.jsp file. Place the include line within the page’s

head tags.

Use this syntax to indicate a relative path to the domain name of this file.
<head>

<%@ include file="/ewebeditpro5/ewebeditpro.jsp" %>

</head>

Setting Up a Form

When setting up a form, follow these steps.
1. Declare a form.

2. Enter a url as the action. This defines the page that manipulates the
user’s input when the user presses the submit button.

3. Enter Post as the method.
Here is a sample form declaration.

<form action="multiedit.jsp?preview" method="POST">

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 557

Integrating eWebEditPro with JSP

Placing the Editor on the Form

Place the editor within the form tags as a box whose width and height you specify.

This illustration depicts the editor appearing as a box.

[¢Rrns - = |(raag -8 B B4 |=EE
J_I [[Apply Style] = Mormal * | Timesz Mew Roman, ™ = J_Inbsp 2 8 T €vi -

] =

This 15 iutial content.

For each editor that you want to place on the Web page, you
® change parameter values as needed

® nsert the editor

Changing Parameter Values

If you want to change parameters that affect all instances of the editor, edit the
ewebeditprodefaults.js file using a standard text editor. (For a description of each
parameter, see “Customizable JavaScript Files” on page 227.)

To change the parameters only for the instance of eWebEditPro that you are
placing on the JSP page, enter the following code. In this example, you remove

the About button (Q) from the toolbar.

<script language="JavaScript'>
eWebEditPro.parameters.reset();
eWebEditPro.parameters.hideAboutButton="False";
</script>

If you are placing more than one editor on a page, and you want the parameters
for each editor to be different, begin the parameter code with
eWebEditPro.parameters.reset(). This line restores the parameters to
the default values set in ewebeditprodefaults.js.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 558

Integrating eWebEditPro with JSP

Inserting the Editor

To place the editor on a JSP page, enter a line with the following elements within

the form.

<%= eWebEditProEditor("field name'™, width, height, initial content) %>

Argument

Description

field name

Enter the name of the field that stores content within
quotes (" "). It does not matter what the name is, but the
field name on the page that retrieves the content must
match this name.

width,
height

Enter the width and height of the editor in percent or
pixels.

® |f a percent, enclose the value in quotes (* “) and
follow it with a percent sign (%), for example
“50%".

® |[f pixels, quotes are optional, for example, 500.

IMPORTANT! If you are integrating eWebEditPro in a
Java Server Page (JSP) environment, you must
surround width and height values in pixels with quotes.
For example:

<%= eWebEditProEditor(“TextHTML1”, *“100%”, 250 ,

strContentl1)%>

initial
content

If you want some text to appear in the editor the first
time a user views it, you can enter text or a variable that
contains the text.

® To enter text, enclose it within quotes (*).

® To enter a variable, define it elsewhere in the file.

Here is an example of a line that calls the editor. In this example, the initial content
is defined in the variable strContentl, which is defined elsewhere in the file.

<%= eWebEditProEditor(""TextHTML1"™, "100%', ''250", strContentl) %>

Adding a Submit Button

Add a standard HTML submit button that allows the user to send the content to
the Web server after entering it. Here is an example of a line that contains a

submit button.

<input type="submit" name="btnSubmit" value="Preview'>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 559

Integrating eWebEditPro with PHP

Integrating eWebEditPro with PHP

Using the Sample

® “Using the Sample Pages” on page 560

® “Creating Your Own Page” on page 560

® ‘“Including a Reference to ewebeditpro.php” on page 560
® “Setting Up a Form” on page 561

® “Placing the Editor on the Form” on page 561

® “Adding a Submit Button” on page 563

Pages

When you download eWebEditPro, Ektron provides sample pages that include
the editor. The default location is www . mywebsite.com/ewebeditpro5/
samples/php.

You should copy these samples to another directory or rename them, and then
modify them as needed for your users. If you do not copy them, any changes you
make are overwritten when you reinstall or upgrade eWebEditPro.

Creating Your Own Page

If you want to create a new PHP page and place eWebEditPro on that page, the
page needs to include these actions.

1. Include the ewebeditpro.php file.

2. Setup aform.

3. Place the editor on the form.

4. Add a submit button.

Finally, you would update your License Key information as needed.
The rest of this section explains how to complete these tasks.

Including a Reference to ewebeditpro.php

Your PHP page must contain an include command that specifies a relative path to
the ewebeditpro.php file. Place the include line within the page’s head tags.

Use this syntax to indicate a relative path to the domain name of this file.

<head>
<?php include(../../../ewebeditpro.php™); ?>
</head>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 560

Integrating eWebEditPro with PHP

Setting Up a Form
When setting up a form, follow these steps.
1. Declare aform.

2. Enter a url as the action. This defines the page that manipulates the user’s
input when the user presses the submit button.

3. Enter Post as the method.
Here is a sample form declaration.

<form action="multiedit.php?preview” method="POST">

Placing the Editor on the Form

Place the editor within the form tags as a box whose width and height you specify.
This illustration depicts the editor appearing as a box.

[t BBAaE o ¥ (ras -R@8 |HoBE L [EE
JJ |8 [Apply Style] * Mormal * | Timez Mew Roman, ™= J_Inl:lsp 28 Th €vi -

] =

This 15 imt1al content,

For each editor that you want to place on the Web page, you
® change parameter values as needed

® nsert the editor

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 561

Integrating eWebEditPro with PHP

Changing Parameter Values

If you want to change parameters that affect all instances of the editor, edit the
ewebeditprodefaults.js file using a standard text editor.

(For a description of each parameter, see “Customizable JavaScript Files” on
page 227.)

To change the parameters only for the instance of eWebEditPro that you are
placing on the PHP page, enter the following code. In this example, you edit the

parameters to remove the About button (Q) from the toolbar.
<script language="JavaScript'>
eWebEditPro.parameters.reset();

eWebEditPro.parameters.hideAboutButton="False";
</script>

If you are placing more than one editor on a page, and you want the parameters
for each editor to be different, begin the parameter code with
eWebEditPro.parameters.reset(). This line restores the parameters to
the default values set in ewebeditprodefaults.js.

Inserting the Editor

To place the editor on a PHP page, enter a line with the following elements within
the form.

<?php echo eWebEditProEditor("field name", height, width, $initial_content); ?>

Argument Description

field name Enter the name of the field that stores content within
guotes (" "). It does not matter what the name is, but the
field name on the page that retrieves the content must
match this name.

height, Enter the height and width of the editor in percent or
width pixels.

® |f a percent, enclose the value in quotes (**) and fol-
low it with a percent sign (%), for example “50%" .

® |[f pixels, quotes are optional, for example, 500.

initial If you want some text to appear in the editor the first
content time a user views it, you can enter text or a variable that
contains the text.

® To enter text, enclose it within quotes (“ “).

® To enter a variable, define it elsewhere in the file.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 562

Integrating eWebEditPro with PHP

Here is an example of a line that calls the editor. In this example, the initial content
is defined in the variable strContentl, which is defined elsewhere in the file.

<?php echo eWebEditProEditor("TextHTML1", "100%", 250, $strContentl); ?>

Adding a Submit Button

Add a standard HTML submit button that allows the user to send the content to

the Web server after entering it. Here is an example of a line that contains a
submit button.

<input type="'submit' name="btnSubmit" value="Preview'>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 563

Integrating eWebEditPro Using JavaScript

Integrating eWebEditPro Using

JavaScript

NoOTE

Using the Sample

If eWebEditPro is used on a platform (that is, a browser or operating system) that
does not support eWebEditPro, a textarea field automatically appears in its
place. No extra work is required to handle unsupported platforms.

Pages

When you download eWebEditPro, Ektron provides sample pages that include
the editor. The pages are located in the samples folder below the folder to which
you installed eWebEditPro. The default location in Windows is
C:\Inetpub\wwwroot\ewebeditpro5\samples\html.

You should copy these samples to another directory or rename them, and then
modify them as needed for your users. If you do not copy them, any changes you
make are overwritten when you reinstall or upgrade eWebEditPro.

A good sample Web page to study is ewebeditpro5\ewebeditpro.htm.

Formats for Placing the Editor on the Page

You can place the editor as a
® box whose width and height you specify, or

® button that, when pressed, displays a new window with the editor

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 564

Integrating eWebEditPro Using JavaScript

This illustration depicts the editor appearing as a box.

[{aHsg ox ¥ pag - 28 |H-BR O EE
J_I 2 [Apply Style) = Marmal * Times Mew Roman, ™ = J_Inbsp & & Thi €vi -

] =

Thiz 12 wutial content,

=

This illustration depicts the editor as a button. When the user clicks the button, the
editor appears in a new window.

<3 ewWebE ditPro - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help

J = Back + = - () it | ‘0 Search [Favoites & 4History ||%v =N

Click 'Edit' to edit this content with the elWebEditPro editor.

ED

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 565

Integrating eWebEditPro Using JavaScript

Creating Your Own Page

If you want to place eWebEditPro on an HTML page, the page needs to include
these actions.

Create an HTML page with header and body tags.
Include the eWebEditPro JavaScript file.

Set up a form.

Modify the parameters (optional).

Create an input area.

I e o

Invoke the editor.

The rest of this section explains how to complete these tasks. Instructions are
also provided for inserting the editor as a button and encoding characters in the
value attribute.

Create an HTML Page with Header and Body Tags
Set up a typical HTML page.

<HTML>

<head>
<title>eWebEditPro</title>
</head>

<body>

</body>

</HTML>

Include the eWebEditPro JavaScript File

Your page must include a reference to the ewebeditpro.js file. Place the src
reference within the head tags.

<script language="JavaScriptl.2" src="/ewebeditpro5/ewebeditpro.js'></script>

Enter a Form Element

Within the body tags, enter a set of form tags. Assign the method attribute to the
form tags, and post as the method’s value.

<form method="post">
place the editor here
</form>

If a form element's method is not set to post, an error message appears below
the editor.

Changing Parameter Values

If you want to change parameters that affect all instances of the editor, edit the
ewebeditprodefaults.js file using a standard text editor (see "The
ewebeditprodefaults File” on page 227).

To change the parameters only for the instance of eWebEditPro that you are
placing on the HTML page, enter the following code.

<script language="JavaScript'>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 566

Integrating eWebEditPro Using JavaScript

eWebEditPro.parameters._parameter= "value';
</script>
For example, the following code displays the "about" button on the toolbar.

<script language="JavaScript'>
eWebEditPro.parameters.hideAboutButton="False";
</script>

If you are placing more than one editor on a page, and you want the parameters
for each editor to be different, begin the parameter code with
eWebEditPro.parameters.reset(). This line restores the parameters to the
default values set in ewebeditprodefaults.js.

Inserting the Editor as a Box

Create a Content Field

Within the form tags, enter a hidden field, text input type tag, or a textarea tag.
This example uses a hidden field.

<input type=hidden name="MyContentl" value="This is initial content.">

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.

NOTE Please read "Encoding Characters in the Value Attribute” on page 569 for
important details about the value attribute.

Declaring a Content Field after Creating the Editor

If the content field (typically a hidden field) appears after the eWebEditPro.create
code, the following error message appears below the editor.

Content field must be declared prior to creating the editor.

If you must declare the control field after creating the editor, delete the error
message before entering the create command.

eWebEditProMessages.elementNotFoundMessage=""";
eWebEditPro.create(...);

The content will still be loaded, but it cannot check to see if the content field
exists.

Creating the Editor

Within the input area, place the editor using the following JavaScript.

<script language="JavaScriptl.2">
<t--
eWebEditPro.create(*'field name", width, height);
//-->

</script>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 567

Integrating eWebEditPro Using JavaScript

Argument Description
field name Enter the name of the field within quotes (" "). The field name must match the value of
the name attribute in the input type tag.
width, Enter the width and height of the editor in percent or pixels.
height If a percent, enclose the value in quotes (" ") and follow it with a percent sign (%), for
example "50%".
If pixels, quotes are optional, for example, 500.
For example
<script language="JavaScriptl.2">
<1--
eWebEditPro.create(**"MyContentl™, 700,150);
//-->
</script>
The content is automatically loaded into the editor and automatically saved when
the form is submitted.
NOTE If you submit by calling the form.submit method, you must manually save the

content by calling eWebEditPro.save() just prior to calling form.submit. To learn
how content is loaded and saved, see "Loading the Content” on page 571.

To access the ActiveX control via JavaScript, once an instance of the editor is
created, use the eWebEditPro JavaScript object.

eWebEditPro.theeditorname

The ActiveX control should only be accessed after the eWebEditPro onready
event fires. For example

eWebEditPro. instances.MyContentl.editor.pasteHTML("'<HR>"); //
insert horz rule

The pasteHTML method inserts HTML content into the editor. For more
information on the pasteHTML and other methods, properties and events of the
eWebEditPro ActiveX control, see “ActiveX Control” on page 245.

Inserting the Editor as a Button

Entering a Field

Within the form tags, enter a hidden field or text input type tag, or a or textarea
tag. This example uses a textarea declaration.

<textarea name="tal" cols=80 rows=5>Click "Edit" to edit this content with the eWebEditPro editor.

</textarea>

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 568

Integrating eWebEditPro Using JavaScript

NOTE If you decide to use hidden field or a text field, read "Encoding Characters in the

Value Attribute” on page 569 for important details about the value attribute.

Entering the Button

To add the button to the page, enter a line with the following elements.

<script language="JavaScriptl.2">

<il--

eWebEditPro.createButton(*'button name', ‘‘textarea name');
//-->

</script>

Argument

Description

button name

Enter a button name within quotes (* “). This is the field name of the button that by
default is <input type=button. . .>. To change the button type, see "Customizing
the Popup Button” on page 189.

textarea
name

Enter the name of the textarea within quotes (" ").The field name must match the field
named in the textarea declaration.

For example

<script language="JavaScriptl.2">

<l--

eWebEditPro.createButton("btnEdit", "tal");
//-->

</script>

NOTE To edit the button text, open the ewebeditpromessages.js file using a standard

text editor. Within that file, edit the text within quotes that follows
popupButtonCaption:.

Encoding Characters in the Value Attribute

Initial content for the editor is typically stored in the value attribute of a hidden
field. For example,

<input type="hidden" name="MyContentl" value="This is the initial content.'>

If the content includes a quote ("), greater or less than character (<>), or an
ampersand (&), the browser prematurely terminates the display of the content.
For example, the input declaration

<input type="hidden" name="MyContentl" value="Characters that need to be encoded: " & <tag>">

would display the following text in the editor
Characters that need to be encoded:

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 569

Integrating eWebEditPro Using JavaScript

This problem occurs because the browser cannot distinguish between one of
these characters and the delimiters of the value attribute.

Also, if you use single quotes to delimit the value attribute, which is not
recommended, you need to encode all single-quote characters.

To solve this problem, you must encode these characters when storing them in a
hidden field. You would insert the character’s entity or character reference in
place of the actual character in the value field.

The following table lists the characters and corresponding entity and character
reference values.

Character Entity Character Comments
Reference
& & & Must be encoded first.
> < <
< > >,;
" " " Value attribute must be quoted
with ", not ".

NOTE The order in which characters are encoded is important. The ampersand (&) must
be encoded before you encode the other characters.

How the Server Converts Characters

Your Web application server must convert these characters. For example, ASP
offers the Server.HTMLEncode function. If your environment does not provide
such a function, you need to write it. It is straightforward and requires the use of a
string substitution function. The pseudo code to encode these characters appears
below.

String strContent

strContent = ReplaceString(strContent, "&", "&')
strContent = ReplaceString(strContent, "<, "&It;"™)
strContent ReplaceString(strContent, ">", ">")
strContent ReplaceString(strContent, """ , "'"'™)

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 570

Integrating eWebEditPro Using JavaScript

Encoding the Single Quote

We recommend surrounding the value attribute with double quotes, but if you
decide to use single quotes, you must encode the single quote character (also

known as an apostrophe).

Character Entity Character Comments
Reference
‘ ' ĵ ' is for XML parsers but may not be
(but see supported by an HTML browser. Therefore, the
comments) character reference (') is preferred, because
HTML browsers and XML parsers support it.

Content Stored in a Textarea Field

When stored in a TEXTAREA field, the greater/less than characters (<>) do not
need to be encoded, because TEXTAREA does not use a value attribute. The
double-quote ("), single-quote (') and ampersand (&) characters should be
encoded in a TEXTAREA field, although most browsers will accept them without
encoding.

Loading the Content

Content is loaded into the editor during the page’s onload event, which invokes
the eWebEditPro.load method. The method copies content from the hidden field
(or other HTML element) to the editor.

To prevent loading, set window.eWebEditProLoadHandled to true.
window.eWebEditProLoadHandled=true;

Detecting the Load Method

To detect when the load method is being invoked, two eWebEditPro events are
fired at this time.

® onbeforeload

® onload

If the onbeforeload event handler returns false, it terminates the load method and
the onload event.

For example,

eWebEditPro.onbeforeload="return confirm(“Do you want to load?’)";
eWebEditPro.onload="alert(“Done loading.”)";
eWebEditPro.create(...);

NoOTE In Netscape, the alert may not function during onload events.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 571

Integrating eWebEditPro Using JavaScript

Manually Loading Content into the Editor
To let the user manually load content, use this syntax.

window.eWebEditProLoadHandled=true

eWebEditPro.create(...)

</script>

<input type=button value="load" onclick="eWebEditPro.load()">

The eWebEditPro.load method loads all instances of the editor on the page. To
load just one, you can use eWebEditPro. instances[n].load(). Or, you can
pass the content using eWebEditPro. instances[n]. load(strContent).

If you use eWebEditPro. instances[n] .- load(), the n within square
brackets is either the name of the editor used when creating it (for example,
eWebEditPro.create(EditorName®, ...))or anindex number (0, 1, 2,
etc., where 0 is the first editor created).

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.
For example

eWebEditPro.create(*"'Summary', 700, 200);
eWebEditPro.create(*'Teaser', 700, 300);
eWebEditPro.create(*'Desc', 700, 400);

eWebEditPro. instances["Desc™]-l1oad();

or
eWebEditPro. instances[2].1oad();

Saving the Content

Content is saved (that is, copied to the hidden field) during the form’s onsubmit
event, which invokes the eWebEditPro.save method. This method copies the
content from the editor to the hidden field (or other HTML element). In Internet
Explorer, the content is also saved when the page is unloaded.

NOTE The eWebEditPro.save method saves content to a temporary cache in the
browser. The content is saved permanently when the form is submitted and its
fields are posted to the server.

To prevent saving, set the form’s eWebEditProSubmitHandled method to true.

document.yourformname.eWebEditProSubmitHandled=true;

Detecting when the Save Method is Invoked

To detect that the save method is being invoked, two eWebEditPro events are
fired at this time.

® onbeforesave

® onsave

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 572

Integrating eWebEditPro Using JavaScript

Terminating the Save Method

Returning false in the onbeforesave event handler terminates the save method
and the onsave event.

For example

eWebEditPro.onbeforesave="return confirm(“Do you want to save?’)";
eWebEditPro.onsave="alert(“Done saving’)";

Saving Content Manually
To manually save content, use this code.

function mysubmit({
eWebEditPro.actionOnUnload = EWEP_ONUNLOAD_NOSAVE;
eWebEditPro.save();
document.myform._submit();

Closing a Window without Saving Content
To close a window (that is, cancel) without saving the content to the hidden field,
use this code.

eWebEditPro.actionOnUnload = EWEP_ONUNLOAD_NOSAVE;
self.close();

See Also: "Preventing the Save Caused by an onbeforeunload Event” on
page 573

Prevent Detecting the onsubmit Event
To prevent automatic saving of the content to the hidden field when a submit
button is pressed, use this code. It must appear prior to creating the editor on the
page.

document._myform._eWebEditProSubmitHandled=true;
eWebEditPro.create(...);

See Also: "Preventing the Save Caused by an onbeforeunload Event” on
page 573

Prevent Detecting the onbeforeunload/onunload Event

To prevent automatically saving the content to the hidden field when the Web
page is unloaded, use this code. It must appear prior to creating the editor on the
page.

window.eWebEditProUnloadHandled=true;

eWebEditPro.create(...);

See Also: "Preventing the Save Caused by an onbeforeunload Event” on
page 573

Preventing the Save Caused by an onbeforeunload Event

Sometimes, a user performs an action that causes the current window to close.
For example, he clicks the small X in the top right corner.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 573

Integrating eWebEditPro Using JavaScript

When such an action occurs, Internet Explorer fires an onbeforeunload event,
which saves the content to the hidden field. If you want to intercept the event and
let the user decide whether or not to save the content at that time, use the
following code. Note that the onbeforesave method is inserted prior to the page
create event.

eWebEditPro.onbeforesave = MySaveCheck;
eWebEditPro.create(*'myeditor™, "100%", *90%");

Then, insert the following function on the page to detect whether to allow the
editor to save. You do not want to never save because that would mean that new
content is never saved.

// Return false to abort the save.
function MySaveCheck()

{
if(ConditionsAllowSave())
return(true); // true allow the save to continue
else
return(false); // false stops the save
b

Finally, if you want suppress the warning message about the save, use the
following code.

eWebEditProMessages.confirmAway = null;

Saving from One Instance of the Editor

The eWebEditPro.save method saves all instances of the editor on the page. To
save just one, use eWebEditPro. instances[n].save(). The n within
square brackets is either the name of the editor used when creating it (for
example, eWebEditPro.create("'EditorName", ...))oranindex number
(0, 1, 2, etc., where 0 is the first editor created).

See Also: “Appendix A: Naming the eWebEditPro Editor” on page 576.
For example

eWebEditPro.create(*'Summary', 700, 200);
eWebEditPro.create(*'Teaser', 700, 300);
eWebEditPro.create(*'Desc', 700, 400);

eWebEditPro. instances["Desc'"] .save();

or
eWebEditPro. instances[2].save();

Alternatively, you can retrieve content by passing an object to the save method.
To do this, set the object’s value property to receive the content.

For example

var objContent = new Object();
objContent.value=""";
eWebEditPro.save(objContent);

.objContent.value now stores the content.

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 574

Integrating eWebEditPro Using JavaScript

Detecting When the Popup Editor is Activated

Testing the Page

Similarly, when using a popup editor with eWebEditPro. createButton(), there are
two eWebEditPro events that fire when the button is pressed and when the
popup window is closed.

® onbeforeedit

® onedit

For example

eWebEditPro.onbeforeedit="return confirmed(“Do you want to edit?’)";
eWebEditPro.onedit="alert(“Done editing’)";
eWebEditPro.createButton(...);

After you create your Web page, test it to verify that it works as planned. When
testing the page, you cannot simply double click the .html file. Instead, you must
type the following url into the Web browser’s address field:

http://1ocalhost/ewebeditpro5 folder/filename._htm

For example, if the file is named mytest.htm and it is located in a folder named
ewebeditpro, enter this url into your browser:

http://1ocalhost/ewebeditpro5/mytest.htm

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 575

Appendices

Appendix A: Naming the eWebEditPro
Editor

When you are naming the eWebEditPro editor, the name must be a valid
JavaScript identifier. As a result, the name must follow these guidelines.

® |t consists of only ASCII letters and digits, underscores (_) and dollar
signs ($).

® The first character cannot be a digit.
® Spaces are not permitted.

® Do not assign BASE as the name. BASE conflicts with JavaScript in the
editor, so you should avoid this name.

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 576

Appendix B: Error Messages

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined
ActiveBar 2.0 32-Bit This error message Remove the Evaluation message by End user by ActiveBar
ActiveX displays if Internet clicking the OK button.
Thank you for Explorer cannot eWebEditPro will continue to
choosing to evaluate access the function normally even after 30 days.
ActiveBar from Data ewebeditpro.Ipk file To suppress the Evaluation
Dynamics Ltd. This when the editor message, try the following ideas.
version of the appears in a Web
software is for page. For Internet Explorer, ensure that
Evaluation Purposes Internet Explorer ® the ewebeditpro.lpk file is not
Only and may be used looks to the corrupt and accessible. It must
for up to 30 days to ewebeditpro.lpk file reside in the server directory
determine if it meets for ActiveBar license where eWebEditPro was
your requirements... information. installed (for example, /
An LPK file is the ewebeditpro5/).
;s;a“r::c;irscien;i(t:it\wgr;(lsm ® afirewall does not block it.
controls for use with ® the server permits .Ipk file
Internet Explorer. extensions. One way to do this
ActiveBar is an is to type the URL to the ewebe-
ActiveX® control used ditpro.lpk in the browser's
by eWebEditPro. address bar.
® the server does not append
information to the end of the
LPK file.
Running the client installation
program should suppress the
evaluation message.
Since the client installation program
is required for Netscape, the
Evaluation message should not
appear when using Netscape.
A license is required The license key does The developer must specify a valid End user/Developer locale0000b.xml

for host:

not match the host
name.

license key.

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

577

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined
Click OK to preserve Unloading a Web The end user can click OK or End user ewebeditpromessages
changes when moving page with the editor Cancel. Js
to another page. Click | prompts to cache the The developer can change the value
Cancel to discard content in the content of actionOnUnload.
changes. field. (Only with IE.)
Content is too large to The size of the HTML The end user can reduce the End user ewebeditpromessages
save. Please reduce content in the editor is content. The developer has several Js
the size and try again. larger than the options. For more information, see
amount specified in http://www.ektron.com///
maxContentSize. support/

ewebeditprokb.cfm?doc_id=1326

and

http://www.ektron.com///

support/

ewebeditprokb.cfm?doc_id=1204
Error uploading the The server is not 1. Verify that the server is the cor- End user locale0000b.xml
selected allowing the uploading rect server used for uploading
file.
The of files. The wrong files.
uploading of files may server may have been 2 Contact the site administrator to
not be allowed at this specified in the login ensure that the login account
location. Please verify information. The login has upload permissions
that the connection account may not have
settings and server upload permissions.
permissions are
correct.
eWebEditPro cannot The HTML content is Manually fix the corruption and try End user locale0000b.xml
clean the document corrupt and could not again.
until these errors are be adequately
fixed. cleaned.
eWebEditPro is not The editor has not Install the editor using the client End user

installed. Click to
install eWebEditPro.

been installed yet.

installation program.

ewebeditpromessages
Js

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

578

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined

Internet Explorer 4.0 IE 3.x or older is being IE 4.01 or later is required. End user locale0000b.xml

or later is required. used.

Invalid License The license key is 1. The domain name in the End user. locale0000b.xml

invalid.
Likely reasons include

1. The domain
name in the URL
does not match
one of the license
keys

2. Thelicense key is
expired

3. Nolicense key is
specified

4. Thelicense key is
for another
product or
version

5. Thelicense key is
corrupt

browser's address or location
bar must match one of the
license keys. For example, http:/
/www.ektron.com matches
www.ektron.com?123456, but
http://www.ektron.com does not
match
123.045.067.0897123456.

Use either the name specified in
the license key or purchase
another license key for the
domain name.

Purchase a license key.

Specify a valid license key. See
Also: the Knowledge Base
article “Error Message: Invalid
license with no license keys in
box” at
http://www.ektron.com///
support/
ewebeditprokb.cfm?doc_id=9
36.

4. Purchase a license key for this
product or version.
eWebEditPro 2.0 license keys
are not valid for eWebEditPro
3, etc.

5. Specify the entire license key
and ensure all the numbers are
correct. For example,
www.ektron.com?123456-20,
not just 123456-20.

Appears in the About
box, which pops up if
a valid license is not
specified.

License is expired for
date:

The license key is
expired.

The developer must specify a valid
license key.

End user/Developer

localev20000.xml

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

579

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined

Sorry, the connection The connection to the Verify that the server domain, login End user localev20000.xml

could not be server could not be name and password are correct. If

established. Please established. This they are, contact the administrator of

verify that the login could be caused by the remote site to verify that the login

and connection incorrect server information is correct.

information are address or login

correct. information.

The editor was not The editor was not Try installing using the client End user localev20000.xml

able to create the able to create a critical installation program.

DHTML Editor. Please component because

run the client one or more required

installation or contact files are missing or

your system corrupt.

administrator.

The editor was not The editor was not Try installing using the client End user localev20000.xml

able to create the able to create a critical installation program.

HTML Source View component because

Editor. Please run the one or more required

client installation or files are missing or

contact your system corrupt.

administrator.

The editor was not The editor was not Try installing using the client End user localev20000.xml

able to create the able to create a critical installation program.

Toolbar. Please run component because

the client installation one or more required

or contact your files are missing or

system administrator. corrupt.

The form method The form's method is The developer must set the method Developer ewebeditpromessages

must be setto "post".
For example, <form
method=""post"'>.
The submit will fail
using "get".

not set to post.

to post.

Js

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

580

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined
The page content is The Web page with Wait a few seconds and try again. End user localev20000.xml
stillinitializing. Please the editor is still
wait... loading and initializing
when the end user
pressed a toolbar
button.
This message is
typically only seen
when using Netscape.
The selected file is too The size of the target 1. Select afile that is less than the End user localev20000.xml
large to allow an upload file exceeds maximum allowed size.
upload. The maximum the upload limits 2. Ask the site administrator to
size 1s defined by the site increase the size limit specified
administrator. in the configuration data.
There is excessive Prompt to clean Itis recommended that you clean the End user localev20000.xml
HTML code that may Office/Word 2000 content.
prevent you from content
changing text format.
There was an error in The editor was not Try installing using the client End user localev20000.xml
the dialog. The client able to open a dialog installation program.
installation for the window because one
editor may need to be of the required files is
run to correct the missing or out of date.
issue.
Unable to check Spell checking is not Install Microsoft Word 97 or later. End user localev20000.xml

spelling. Microsoft
Word 97 or later is
required.

supported because
Word 97 or later is not
installed or cannot be
accessed.

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

Appendix B: Error Messages

Error Message Cause How to Resolve Audience Where Message is
Defined

Unable to find content The editor could not Please check the following: Developer ewebeditpromessages
field (typically a find the content field. e F aq | ired s
hidden field) within a ormtag is require
form. Please check e Content field is required and
the following: must match the name specified
® Formtagis when creating the editor

required ® Content field must be declared
e Content field is prior to creating the editor

required and

must match the

name specified

when creating the

editor
® Content field

must be declared

prior to creating

the editorName

specified:
Unable to run in The editor is being The editor can only be used in a Developer localev20000.xml
container: used in an application browser.

other than a Web
browser.

Unable to save. The editor is unable to The end user can copy the content End user

Continue and lose
content?

save the content in
the content field,
typically because the
window with the
content field was
closed.

to the clipboard to preserve it.

ewebeditpromessages
Js

Ektron® eWebEditPro Developer’'s Reference Guide, Release 5.1, Revision 1

582

Appendix C: eWebEditPro Architecture

The eWebEditPro editor is a browser plug-in. It runs in a Web browser on the
client computer.

The editor's content is stored in the client browser. As a result, the editor does
not need to make a direct HTTP connection to the server to manage the
content. The content is transferred by the browser itself using standard form
elements.

The editor typically retrieves configuration and localization information by
downloading files from the server using HTTP or HTTPS. Optionally, the
editor can be configured to upload files (for example, images) to the server
using FTP. Images may also be uploaded using HTTP in a standard Web
form. The following illustration indicates these relationships.

windows Client Dwhiamic yieb

pC Server
HT.TRP

Optionally FTP
for file upload.

The eWebEditPro editor uses standard Microsoft Visual Basic components
and standard Microsoft Internet Explorer components. The IE components
are used to edit the content even when the editor is in a page loaded by
Netscape.

]

ewebEdtPro Components

- .

— E)

Microsoft Wisual Basic Cormponents Microsoft Internet Explorer
Components

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 583

Appendix C: eWebEditPro Architecture

The editor is placed in a Web page using a native dynamic language (for
example, ASP, JSP) or JavaScript. The dynamic languages are just a thin
wrapper around JavaScript. The JavaScript then creates an instance of the
eWebEditPro editor in the browser. The following diagram shows the relationship
between the client-side script and the other OCX and DLL files that make up the
eWebEditPro editor.

ewebeditpro
client script

L7 W Ay
ekyversion.dl ewebeditpro.ocx Metscape Flug-in
e i v =
evwehedittool eweheditrtf.ocy ekclean.dl
bar .o

i
Actbar2.ocx

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 584

Appendix D: Automatic Upload File
Types

This appendix lists file types and their corresponding numeric values, which
are used in Automatic Upload feature. For more information, see”Automatic
Upload Object” on page 499.

When a file is automatically uploaded, eWebEditPro normally supplies a
numeric code to identify the file type. The code lets a server script determine
the type of file being uploaded, so that it can determine how to organize and
store the file.

The file type name follows the HTML convention, where a GIF file is an
“image/gif” type.

NOTE The numeric code -1 is assigned to an unknown file type.

The following tables list all file types and their corresponding numeric codes,
organized into the following categories.

® “Images” on page 586

® "Audio” on page 588

® "Video” on page 589

® "Text” on page 590

® "Application (file for a specific application)” on page 591

® "Other” on page 598

Ektron® eWebEditPro Developer’s Reference Guide, Release 5.1, Revision 1 585

Appendix D: Automatic Upload File Types

Im ages
File MIME file type Numeric value
extension
ipg image/jpeg 0
gif image/gif 1
png image/png 2
jpeg image/jpeg 3
tif image/tiff 4
bmp image/x-ms-bmp 5
tga image/x-targa 6
emf image/x-emf 7
wmf image/x-wmf 8
img image/x-img 9
pic image/x-pict 10
pcx image/x-pcx 11
jpe image/jpeg 12
tiff imageltiff 13
cgm image/cgm 14
cmx image/x-cmx 15
dsf image/x-mgx-dsf 16
dwg image/x-dwg 17
dxf image/x-dxf 18
fif image/fif 19

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

586

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

g3f image/g3fax 20
ief image/ief 21
mil image/x-cals 22
pbm image/x-portable-bitmap 23
pcd image/x-photo-cd 24
pgm image/x-portable-graymap 25
pict image/x-pict 26
pnm image/x-portable-anymap 27
ppm image/x-portable-pixmap 28
ras image/cmu-raster 29
ras image/x-cmu-raster 30
rgb image/x-rgb 31
svf image/vnd.svf 32
wi image/wavelet 33
xbm image/x-xbitmap 34
Xpm image/x-xpixmap 35
xwd image/x-xwindowdump 36

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 587

Appendix D: Automatic Upload File Types

Audio

File MIME file type Numeric value
extension

abs audio/x-mpeg 100
aif audio/x-aiff 101
aifc audio/x-aiff 102
aiff audio/x-aiff 103
au audio/basic 104
es audio/echospeech 105
kar audio/midi 106
mid audio/midi 107
midi audio/midi 108
mp2 audio/mpeg 109
mp2a audio/x-mpeg-2 110
mp3 audio/mpeg 111
mpa audio/x-mpeg 112
mpa2 audio/x-mpeg-2 113
mpega audio/x-mpeg 114
mpga audio/mpeg 115
ra audio/x-realaudio 116
ram audio/x-pn-realaudio 117
rm audio/x-pn-realaudio 118
rpm audio/x-pn-realaudio-plugin 119

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 588

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

snd audio/basic 120
tsi audio/TSP-audio 121
VOX audio/voxware 122
wav audio/x-wav 123

Video

File MIME file type Numeric value
extension

avi video/x-msvideo 200
fli video/x-fli 201
mov video/quicktime 202
movie video/x-sgi-movie 203
mp2v video/mpeg-2 204
mpe video/mpeg 205
mpeg video/mpeg 206
mpg video/mpeg 207
mpv2 video/mpeg-2 208
qt video/quicktime 209
vdo video/vdo 210
viv video/vivo 211
vivo video/vnd.vivo 212

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

589

Appendix D: Automatic Upload File Types

Text

File MIME file type Numeric value
extension

asc text/plain 300
c text/plain 301
cc text/plain 302
Ccss text/css 303
etx text/x-setext 304
f text/plain 305
fo0 text/plain 306
h text/plain 307
hh text/plain 308
htm text/html 309
html text/html 310
is text/javascript 311
Is text/javascript 312
m text/plain 313
mocha text/javascript 314
rtf text/rtf 315
rtx text/richtext 316
sgm text/sgml 317
sgml text/sgml 318
talk text/x-speech 319

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 590

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

tsv text/tab-separated-values 320

txt text/plain 321

vbs text/vbscript 322

xml text/xml 323

Application (file for a specific application)

File MIME file type Numeric value
extension

ai application/postscript 400
ano application/x-annotator 401
asn application/astound 402
asp application/x-asap 403
axs application/x-olescript 404
bcpio application/x-bcpio 405
bin application/octet-stream 406
ccad application/clariscad 407
ccv application/ccv 408
cdf application/x-netcdf 409
class application/octet-stream 410
cpio application/x-cpio 411
cpt application/mac- 412

compactpro

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 591

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

csh application/csh 413
css application/x-pointplus 414
db application/octet-stream 415
der application/x-director 416
dir application/x-director 417
dms application/octet-stream 418
doc application/msword 419
doc application/x-framemaker 420
drw application/drafting 421
dvi application/x-dvi 422
dxr application/x-director 423
eps application/postscript 424
evy application/envoy 425
exe application/octet-stream 426
ez application/andrew-inset 427
faxmgr application/x-fax-manager 428
faxmgrjob application/x-fax-manager- 429

job

fm application/x-framemaker 430
frame application/x-framemaker 431
frm application/x-framemaker 432
gtar application/x-gtar 433

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 592

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

gz application/x-gzip 434
hdf application/x-hdf 435
hgx application/mac-binhex40 436
icnbk application/x-iconbook 437
igs application/iges 438
ins application/x-net-install 439
ins application/x-insight 440
insight application/x-insight 441
inst application/x-install 442
ips application/x-ipscript 443
ipx application/x-ipix 444
latex application/x-latex 445
Icc application/fastman 446
Iha application/octet-stream 447
lic application/x-enterlicense 448
Isp application/x-lisp 449
Izh application/octet-stream 450
ma application/mathematica 451
mail application/x-mailfolder 452
man application/x-troff-man 453
mbd application/mbedlet 454

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 593

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

me application/x-troff-me 455
mif application/x-mif 456
mpp application/vnd.ms-project 457
ms application/x-troff-ms 458
nc application/x-netcdf 459
niff application/vnd.music-niff 460
oda application/oda 461
ods application/x-oleobject 462
p3d application/x-p3d 463
pac application/x-ns-proxy- 464

autoconfig

pcn application/x-pcn 465
pdf application/pdf 466
pgn application/x-chess-pgn 467
pl application/x-perl 468
pot application/mspowerpoint 469
pp application/x-ppages 470
ppages application/x-ppages 471
pps application/mspowerpoint 472
ppt application/mspowerpoint 473
ppz application/mspowerpoint 474
pre application/x-freelance 475

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 594

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

prt application/pro_eng 476
ps application/postscript 477
rad application/x-rad- 478

powermedia
roff application/x-troff 479
sc application/x-showcase 480
scm application/x- 481
lotusscreencam

sea application/x-stuffit 482
set application/set 483
sgi-lpr application/x-sgi-lpr 484
sh application/sh 485
shar application/shar 486
sho application/x-showcase 487
show application/x-showcase 488
showcase application/x-showcase 489
sit application/x-stuffit 490
skd application/x-koan 491
skm application/x-koan 492
skp application/x-koan 493
skt application/x-koan 494
slate application/slate 495

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 595

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

slides application/x-showcase 496
smgl application/sgml 497
smi application/smil 498
smil application/smil 499
sol application/solids 500
spl application/futuresplash 501
src application/x-wais-source 502
step application/STEP 503
stl application/SLA 504
stp application/STEP 505
sv4crc application/x-sv4crc 506
svd application/vnd.svd 507
swf application/x-shockwave- 508

flash

t application/x-troff 509
tar application/x-tar 510
tardist application/x-tardist 511
tel application/tcl 512
tex application/x-tex 513
texi application/x-texinfo 514
texinfo application/x-texinfo 515
tr application/x-troff 516

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 596

Appendix D: Automatic Upload File Types

File MIME file type Numeric value
extension

tsp application/dsptype 517
unv application/i-deas 518
ustar application/x-ustar 519
uu application/octet-stream 520
v4cpio application/x-sv4cpio 521
v5d application/vis5d 522
ved application/x-cdlink 523
vda application/vda 524
wb application/x-inpview 525
wba application/x-webbasic 526
wkz application/x-wingz 527
wpd application/wordperfect5.1 528
wsrc application/x-wais-source 529
xlc application/vnd.ms-excel 530
Xl application/vnd.ms-excel 531
xIm application/vnd.ms-excel 532
xls application/vnd.ms-excel 533
xlw application/vnd.ms-excel 534
xsl application/ms-excel 535
zip application/zip 536
ztardist application/x-ztardist 537

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 597

Appendix D: Automatic Upload File Types

Other

File MIME file type Numeric value
extension

3dmf x-world/x-3dmf 1000
dwf drawing/x-dwf 1001
ice x-conference/x-cooltalk 1002
iges model/iges 1003
iv graphics/x-inventor 1004
mesh model/mesh 1005
mime www/mime 1006
mmid X-music/x-midi 1007
msh model/mesh 1008
opp x-form/x-openscape 1009
pdb chemical/x-pdb 1010
silo model/mesh 1011
Svr x-world/x-svr 1012
vrml model/vrml 1013
VIw x-world/x-vream 1014
vts workbook/formulaone 1015
wix x-script/x-wfxclient 1016
wrl model/vrml 1017
Wvr x-world/x-wvr 1018
Xyz chemical/x-pdb 1019

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 598

Appendix D: Automatic Upload File Types

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 599

Index

Symbols
<P>tags
removing 295

A

actionOnUnload, JavaScript object
property 139
ActiveBar 577
ActiveX
control properties
BaseURL 128
CharSet 122
Config 122
Disabled 122
Get WDDX() As String 124
hideAboutButton 124
IsDirty 124
License 124
Locale 124
ReadOnly 124
srcPath 125
StyleSheet 125
Title 125
versioninstalled 125
xmlinfo 126
events
onblur 149
ondblclickelement 148
onexeccommand 148
onfocus 148
methods 246
disableAllStyleSheets 55
ExecCommand 62
Focus 63
getBodyHTML 64
getBodyText 65
getDocument 66
getHeadHTML 69
getProperty 71
getPropertyBoolean 71
getPropertyinteger 71
getPropertyString 71
getSelectedHTML 72
getSelectedText 73
isEditorReady() As Boolean 76
MediaFile() As Media File
Object 83
pasteHTML 85
pasteText 85
setBodyHTML 94
setDocument 95
setHeadHTML 98
setProperty 99

style sheets 45
addInlineStyle 44
BodyStyle 48
ClearStylesFromTags 49
disableStyleSheet 54
GetActiveStyleSheetTitles 63
PopulateTagsWithStyles 86
ShowActiveStylesDetails 101
Toolbars() As Toolbar Control
Object 105
XMLProcessor() As XML
Object 106
addEventHandler, JavaScript object
method 43
addinlineStyle, ActiveX style sheet
method 44
addLinkedStyle Sheet, ActiveX style
sheet method 45
AllowSubDirectories, image selection
object property 111
allowUpload
Automatic Upload Object 110
AllowUpload attribute, autoupload
element
autoupload element, AllowUpload
attribute 438
AllowUpload, image selection object
property 112
architecture of eWebEditPro 583
array, instanceTypes 241
AskOpenFile method, WeblmageFX 46
AskSaveAs method, WeblmageFX 47
AskSelectColor method,
WeblmageFX 47
ASP
file upload 411
integrating with eWebEditPro 534
ASP.NET, integration with
eWebEditPro 539
attribute types, configuration file 266
attributes
custom tag, ColdFusion 553
removing from file globally 340
autoclean
attribute of standard element 294
autolnstallExpected, JavaScript object
method 48
automatic image upload 457
installing 459
Automatic Upload
ASP example 496
ASP sample database 459
Automatic Upload Object 499
ColdFusion example 494

controlling programatically 499
data island for return data 471
displaying progress information to
user 437
information components 462
installing 459
Media File Object Properties 499
Methods
GetFieldValue 66
GetFileDescription 67
GetFileStatus 68
SetFileStatus 97
modules that enable 459
overview 457
receiving a file 467
ServerName Property 108
XML element descriptions 488
Automatic Upload Object 499
AllowUpload 110
properties
content type 110
ContentDescription 110
contentTitle 110
port 111
autoupload element
openaccess attribute 436
resplvl attribute 437
uploadonsave attribute 437

B

background color

setting for editor 121
bar element, configuration file 271
BaseURL

ActiveX control property 128

image selection object

property 112

binary, saving unicode characters as 356
body of document

letting users view 328
bodyStyle, ActiveX control property 121
BodyStyle, ActiveX style sheet

method 48
boolean attribute type 266
BorderSize, image selection object

property 112
browser

requirements 159

hardware 160
viewing 159
Web server 159

button element, configuration file 272
buttons

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 i

adding separator bar between 177
adding space between 177
adding to menu 173
assigning images to in

configuration file 299
caption text

aligning 179

displaying 179
images

changing 178

creating custom 308
rearranging on menu 176
removing from menu 176
translating to foreign

language 180

buttonTag, parameters object

property 129

C
caption
menu, editing 172
carriage return, processing when content
is saved 334
cascading style sheets, see style sheets
Cell Properties dialog
customizing 311
characters
encoding in the Value
attribute 569
special and extended, see
encoding special characters
charencode Attribute 356
binary 357
charref 358
entityname 358
latin 359
special 359
tips for choosing 359
UTF-8 357
charset, specifying for a page 122
class
attributes
Microsoft Word, removing 297
style
apply to selected text 376
applying to text surrounded by
blocking tags 371
applying two style classes to same
content 373
determining contents of dropdown
list 377
determining names in dropdown
list 378
removing from content 340
resolving overlapping
attributes 379

suppressing contents of dropdown
list 379
suppressing from dropdown
list 379
translating to foreign
language 378
types 377
tags, removing from Microsoft
WORD 2000 content 370
clean dialog, displaying 335
clean feature attributes
charencode 334
cr 334
feedbacklevel 335
hideobject 336
If 336
mswordfilter 336
preferfont 336
preservechars 337
prompt 337
reducetags 337
showdonemsg 338
showonsize 338
cleanHTML 332
publishing option 328
suppressing clean message 338
ClearStylesFromTags, ActiveX style
sheet method 49
client installation
failure 235
file
directory path to 130
pages
customizing 234
deleting 235
user cancellation 235
clientinstall, parameters object
property 130
cmd element, configuration file 278
cmdfueditimage command 512
cmdmfuuploadall command 460
cmdmfuuploadcontent command 500
cmdmsword 25, 348
ColdFusion
custom tags 553
file upload 421
parameters
object,properties,bodyStyle 555
cols, parameters object property 130
command object interface
method
Addltem 45
Clear 49
CmdFirst 49
CmdNext 50
FirstCommand 63
getProperty 71

getProperty String 72
getPropertyBoolean 72
getPropertyinteger 72
ListCommandName 80
NextCommand 83
SetProperty 99
property
CmdCaption 106
CmdData 106
CmdGray 106
CmdSorted 107
CmdText 107
CmdToggledOn 107
CmdToolTipText 107
CmdType 107
CmadVisible 108
commands 157
modifying by scripting 194
removing from context menu 192
standard
cmdcopy 526
cmddelete 526
cmdopen 527
cmdpaste 527
cmdsave 527
cmdundo 528
toolbarreset 239
config element, configuration file 279
Config, ActiveX control property
122
config.xml file see configuration file
configuration data
WeblmageFX 514
configuration file
allowCustomize 254
attribute types 266
button 272
changing location 250, 253
clean 332
command 157
config 265
customizing 268
overriding user customization 256
preventing users from 255
editHTML 328
external 325, 330
features element 266
fixing when changes have no
effect 256
interface element 265
managing 248, 251
mediafiles feature 430
defsource element 443
domain element 440
maxsizek element 433
mediaconfig element 433
mediafiles element 432

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 ii

password element 439
port element 443

proxyserver element 440

transport element 434

username element 439

validext 432

webroot element 442

xferdir element 441
menu 288
overview 258
spellcheck 343
standard element 293
standard elements 268

bar 271

button 272

cmd 278

command 275, 278

config 279

features 280

image 281

interface 282

listchoice 284

menu 288

popup 290

selection 291

space 292

tooltiptext 297
style element 296
tables, managing 310

using to customize toolbar 166

viewas 327

content
determining if changed 75

estimating size 60
loading

from HTML file 527

into editor 571
maximum size 130
publishing options 328
read only 132
saving

in editor 572

to HTML file 527

content type, Automatic Upload

Property 110

content upload 500

cmdmfuuploadcontent
command 500

determining if content changed

prior to 503

determining where content is

stored 505

enabling in the user interface 500
fields in the posted form 502
interface object properties 501

JavaScript example 502

object interface properties 501

receiving page 505
retrieving content from
eWebEditPro 500
SetContent method 95
types of content 507
ContentDescription, automatic upload
property 110
contentTitle, Automatic Upload
Property 110
context menu
customizing 192
displaying 284
removing commands 192
suppressing 193, 284
continueparagraph attribute, standard
element 295
Convertimage method, WeblmageFX 52
copying text, command for 526
cr, clean feature attribute 334
create
JavaScript object method 53
createButton, JavaScript object
method 53
CreateNew method, WeblmageFX 54
custom features,creating 325, 330
custom tags
ColdFusion 553
custom toolbar buttons, disabling while
viewing HTML 327
customizing eWebEditPro
parameters 547

D

default style sheet 368
defaultdivonenter attribute
standard element 295
DefDestinationDir, image selection
object property 112
defsource element,mediafiles feature
443
deleting text, command for 526
destination,upload, specifying 441
directory path to eWebEditPro 227
disableAllStyleSheets, ActiveX style
sheet method 55
Disabled, ActiveX control property 122
disableStyleSheet, ActiveX style sheet
method 54
DIV tag
applying to text surrounded by
blocking tags 371
inserting when user presses
<Enter> 295
docbusymsg attribute, standard
element 296
Document is Busy dialog, controlling
appearance 296

documents
letting users view body only 328
letting users view entire
source 328
load waiting time, warning
message 295
domain element,mediafiles feature 440
Domain, image selection object
property 113
double-click element handlers
eWebEditProDbIClickElement 154
eWebEditProDblClickHyperlink 15
5
eWebEditProDblClicklmage 155
eWebEditProDblIClickTable 155
dropdown lists
adding to menu 174
creating item that generates no
command 185

E

EditCommandComplete event,
WeblmageFX 144
EditCommandStart event,
WeblmageFX 145
EditComplete event, WeblmageFX 145
EditFile method, WeblmageFX 55
EditFromHTML method,
WeblmageFX 56
editHTML feature, configuration file 328
editor
inserting as a box 567
inserting as a button 568
instance object property 136
loading content 571
naming guidelines 576
placing more than one on
page 160
placing on a web page 564
popup, detecting when
activated 575
saving content 572
type
specifying 131
editor name
JavaScript object property 139
editorGetMethod, parameters object
property 144
EkFileObject API 481
EkMediaTransfer.DLL 459
EktronFilelO
implementing image upload 414
elemName, 136
embedattributes, parameters object
property 130
EnableCreation method,
WeblmageFX 57

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 iii

EnableFormatChange method,
WeblmageFX 57
EnableNameChange method,
WeblmageFX 58
encoding
characters in the Value
attribute 569
special characters 354
configuring eWebEditPro 356
displaying Asian languages 356
preventing for certain
characters 337
unicode characters
saving 355
viewing 355
end tag, removing 339
equivClass attribute, style tag 373
ErrorClear method, WeblmageFX 59
ErrorDescription method,
WeblmageFX 59
ErrorValue method, WeblmageFX 60,
61
estimateContentSize, JavaScript object
method 60
estimating size of content 60
event handler functions
eWebEditProDblIClickElement 154
eWebEditProExecCommand 153
eWebEditProMediaSelection 154
eWebEditProReady 153
events
eWebEditPro events file 231
eWebEditPro
integrating using JavaScript 564
integration with ColdFusion 551
path, prepending URL with 91
ewebeditpro object
methods
isEditor 76
ewebeditpro.js file
ewebeditpropath 227
including 566
ewebeditpro.lpk 577
eWebEditProDbIClickElement 154
eWebEditProDbIClickHyperlink
double-click element handler 155
eWebEditProDbIClickimage
double-click element handler 155
eWebEditProDbIClickTable
double-click element handler 155
ewebeditprodefaults.js file
clientinstall 130
ewebeditproevents.js file
onDbIClickElementHandler 231
onDblClickHyperlinkHandler 231
eWebEditProExecCommand, event
handler function 153

eWebEditProExecCommandHandlers
Array 237
eWebEditProMediaSelection
event handler function 154
ewebeditpromessages.js file
clientInstallMessage 230
confirmAway 229
donelLoading 229
doneSaving 229
elementNotFoundMessage 229,
230
errorLoading 229
installPrompt 228
invalidFormMethodMessage 230
loading 228
popupButtonCaption 228
querySave 229
saveFailed 229
saving 229
sizeExceeded 229
waitingToLoad 228
eWebEditProReady
event handler function 153
eWebEditProUtil JavaScript Object 4,
243
methods
getOpenerinstance 70
HTMLEncode 74
IsOpenerAvailable 78
properties
editorName 143
languageCode 143
queryArgs 143
eWepAutoSvr.dll file 459
ExecCommand method 62
extended characters, see encoding
special characters
external features
adding 325, 330

F

features element, configuration file 280
feedbacklevel, attribute of clean
element 335
file
open, dialog,command for
launching 527
file upload information object properties
FW Password 114
FWProxyServer 114
ImageHeight 116
ImageWidth 116
IsLocal 116
Password 117
ProxyServer 117
TransferRoot 119

FileSize, image selection object
property 113
FileTitle, image selection object
property 113
FileType, image selection object
property 113
fmtchange element, WeblmageFX 515
focus
ActiveX method 63
setting programatically with
JavaScript 63
font tags, removing 340
fonts
changing list of 183
default, specifying 184
name, specifying in configuration
file 319
size
changing list of 184
specifying in configuration file 320
specifying in configuration file 319
form elements 330
entering on a web page 566
formName, instance object property 136
FTP
file upload 409
image selection example 403
selecting files from server 405
FW Password, image selection object
property 114
FWLoginName, image selection object
property 114
FWPort, image selection object
property 114
FWProxyServer, image selection object
property 114
FWUse, image selection object
property 114
FWUsePassV, image selection object
property 114

G

Get EnablePathResolution, image
selection object property 115

Get IsValid, image selection object
property 115

Get ShowResolutionOverride, image
selection object property 115

Get WDDX() As String, ActiveX control
property

124

Get XferType, image selection object
property 115

GetActiveStyleSheetTitles, ActiveX style
sheet method 63

getBodyHTML, ActiveX method 64

getBodyText, ActiveX method 65

Ektron® eWebEditPro Developer’'s Reference Guide,

Release 5.1, Revision 1 iv

GetContentType 502

getDocument, ActiveX method 66

GetFieldValue, Automatic Upload
Methods 66

GetFileDescription, Automatic Upload
Methods 67

GetFileStatus, Automatic Upload
Methods 68

getHeadHTML, ActiveX method 69

Getlmagelnformation method,
WeblmageFX 69

getProperty, ActiveX method 71

getPropertyBoolean, ActiveX method 71

getPropertyInteger, ActiveX method 71

getPropertyString, ActiveX method 71

getSelectedHTML, ActiveX method 72

getSelectedText, ActiveX method 73

GetValidFormats method,
WeblmageFX 73

given, image path resolution 423

graphics, see images

H

HandledInternally, image selection
object property 115
hardware requirements 160
headings
changing list of 184
specifying in configuration file 321
height, instance object property 137
hideAboutButton, ActiveX control
property 124
hideobject, clean feature attribute 336
HorizontalSpacing, image selection
object property 116
HTML
cleaning 332
editing 328
file, loading into content 527
instance object property 137
source code
viewing 327
disabling custom buttons 327
HTTP file upload 410
Hyperlink dialog box
customizing 382
default values 389
hyperlinks
managing 382

icons, see images

id, instance object property 137
image element, configuration file 281
image file

dynamically selecting upload
location 450
image selection
database samples 407
examples of implementing 396
FTP
example 403
requirements 404
preventing user from upload 435
workflow 392
image selection object
methods
FileExistsLocally 62
retrieveHTMLString 91
UseHTMLString 105
properties
accessing programatically 425
alignment 111
AllowSubDirectories 111
AllowUpload 112
BaseURL 112
BorderSize 112
DefDestinationDir 112
DefSourceDir 113
Domain 113
FileSize 113
FileTitle 113
FileType 113
FWLoginName 114
FWPort 114
FWUse 114
FWUsePassV 114
Get EnablePathResolution 115
Get IsValid 115
Get ShowResolutionOverride 115
Get XferType 115
HandledInternally 115
HorizontalSpacing 116
LoginName 116
MaxFileSizeK 117
NeedConnection 117
Port 117
ProxyServer 118
RemotePathFileName 118
ResolvePath 118
ShowHeight 119
ShowWidth 119
SrcFileLocationName 119
TransferMethod 119
TransferRoot 120
Use PassV 120
ValidConnection 120
ValidExtensions 120
VerticalSpacing 120
WebPathName 121
WebRoot 121
image upload

automatic 457
implementing 409
see also image selection
imageedit element, eWebEditPro
configuration data 513
ImageEditor method, WeblmageFX 74
ImageError event, ImageError 146
ImageHeight, image selection object
property 116
images
assigning to buttons in
configuration file 299
changing transfer method on the
fly 427
creating custom 308
entry point for external scripts 426
external 299
formats supported 299
inserting, loaded by external
mechanism 428
internal 299
media file object, accessing
programatically 425
modifying upload directory 429
path, resolving 423
properties
accessing via Netscape 425
repository, setting up 447
setting external page
parameters 427
setting height 116
setting width 116
sources 299
uploading content copied from
another application 457
ImageWidth, image selection object
property 116
imgcreate element, WeblmageFX 516
imgedit element, WeblmageFX 516
imgfmt element, WeblmageFX 517
including the eWebEditPro Javascript
file 566
initialize toolbar event 151
Insert Hyperlink dialog
specifying default values 389
Insert Table dialog
customizing 311
insertMediaFile, instance object
method 74
installation pages, client,
customizing 234
installPopup, JavaScript object
property 140
InstallPopupQuery, parameters object
property 135
installPopupurl, parameters object
property 134

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 v

instance object 240
events
onerror event 241
methods
insertMediaFile 74
isChanged 75
isEditor 76
load 82
save 92
properties
editor 136
elemName 136
formName 136
height 137
html 137
id 137
maxContentSize 137
name 138
receivedEvent 138
status 138
type 138
width 139
instances collection, JavaScript object
property 140
instanceTypes array 241
integer attribute type 267
integrating eWebEditPro
using JavaScript 564
with ASP 534
with ASP.NET 539
with ColdFusion 551
with JSP 557
with PHP 560
interface element, configuration file 282
interface, user
defining 268
isAutolnstallSupported, JavaScript
object property 140
isChanged field 503
isChanged, JavaScript object method 75
IsDirty method, WeblmageFX 76
IsDirty, ActiveX control property 124
isEditor
ewebeditpro object method 76
instance object method 76
isEditorReady() As Boolean, ActiveX
method 76
isInstalled, JavaScript object
property 140
IsLocal, image selection object
property 116
IsPresent method, WeblmageFX 78
isSupported, JavaScript object
property 141
IsTagApplied method 79
IsVisible method, WeblmageFX 79

J

JavaScript
files, customizing 227
object model 236
JavaScript object 236
events
onbeforeedit 150
onbeforeload 150
onbeforesave 150
oncreate 149
oncreatebutton 149
onedit 150
onerror 152
onload 151
onready 152
onsave 151
ontoolbarreset 151
eWebEditProUtil 4, 243
methods
addEventHandler 43
autolnstallExpected 48
create 53
createButton 53
edit
JavaScript object method 55
estimateContentSize 60
isChanged 75
load 82
openDialog 84, 85
outerXML 84
refreshStatus 89
resolvePath(url) 91
save 92
properties 236
actionOnUnload 139
editor name 139
installPopup 140
instances collection 140
isAutolnstallSupported 140
isinstalled 140
isSupported 141
parametersobject 141
status 141
EWEP_STATUS_FATALERR
OR 141
EWEP_STATUS_INSTALLED
141
EWEP_STATUS_LOADED 14
1
EWEP_STATUS_LOADING 1
41
EWEP_STATUS_NOTINSTAL
LED 141
EWEP_STATUS_NOTLOADE
D 141
EWEP_STATUS_NOTSUPPO
RTED 141

EWEP_STATUS_SAVED 141
EWEP_STATUS_SAVING 141
EWEP_STATUS_SIZEEXCEE
DED 142
EWEP_STATUS_UNABLETO
SAVE 142
upgradeNeeded 142
version 142
JSP, integration with eWebEditPro 557

L
language
displaying menus and dialogs in
non-European language 221
editor
modifying 201
eWebEditPro screens and menus,
changing 201
foreign
spell checking 344
spell checking foreign 223
license information, where stored 577
License, ActiveX control property
124
linebreak, replace paragraph tag 295
linefeed character, processing when
content is saved 336
links, quick, see quick links
listchoice element,configuration file 284
ListCommandName method 80
ListFilesWithStatus, Media File Object
Methods 80
load
instance object method 82
JavaScript object method 82
LoadedFileName method,
WeblmageFX 83
Loadinglmage event, ImageError 146
local, image path resolution 423
locale method, parameters object 83
Locale, ActiveX control property 124
localization files 202
LoginName, image selection object
property 116
LPK file 577

M

maxContentSize, parameters object
property 130

MaxFileSizeK, image selection object
property 117

maximum content size 130

maxloadsec attribute, standard
element 295

maxsizek element, mediafiles
feature 433

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 Vi

media file object

using 451

Media File Object Methods

AddFileForUpload 43
AddNamedData 46
ListFilesWithStatus 80
ReadNamedData 88
ReadUploadResponse 88, 89
RemoveFieldValue 90
RemoveFileForUpload 90
RemoveNamedData 91
UploadConfirmMsg 105

Media File Object Properties 499

accessing programatically 425

accessing with Netscape 425

changing transfer method on the
fly 427

modifying upload directory 429

setting external page
parameters 427

specifying image 428

using external scripts 426

modifying by scripting 194
object interface 194
placing on row with another
menu 171
popup
creating 181
rearranging buttons 176
removing buttons 176
removing from toolbar 170
right-click, see context menu
tables,customizing 314
toolbar
tables,customizing 315
translating buttons to foreign
language 180
user customization 254

wrapping to new toolbar row 171

menus interface
method
CommandAdd 50
CommandDelete 50, 51
Commandltem 51
HideAbout 51, 73

namechange element,
WeblmageFX 517
NeedConnection, image selection object
property 117
Netscape
accessing media file object
properties 425
attributes to embed tag 130
browser for editing 159
browser for viewing 159
browser support for UTF-8 365
criteria for choosing charencode
value 361
maximum size of content 130
message when user opens
page 230
method to provide compatibility 71
property that indicates Esker
plug-in installed 141
viewing special characters 355
writing to ActiveX control
property 100

mediaconfig element, mediafiles
feature 433

MediaFile() As Media File Object,
ActiveX methods 83

mediafiles element, mediafiles

New Hyperlink dialog, editing quick
HideAllMenus 74 links 390
PopupMenu 86

SeparatorBarAdd 93 o)

SeparatorSpaceAdd 94

feature 432 ShowAbout 100 object
mediafiles feature ShowAlIMenus 102 model, JavaScript 236
defsource element 443 ToolbarAdd 103 object tag
domain element 440 ToolbarModify 104 definition 336
maxsizek element 433 Method hiding 336
mediaconfig element 433 SetFieldValue 96 objectattributes, parameters object
mediafiles element 432 methods property 131
password element 439 ActiveX 246 onbeforeedit, JavaScript object

port element 443
proxyserver element 440
transport element 434
username element 439
validext 432

webroot element 442
xferdir element 441

menu element, configuration file 288
menus

adding
buttons 173
dropdown list 174
separator bar between 177
space between buttons 177
to toolbar 169
aligning button caption text 179
caption, editing 172
changing image on buttons 178
context, see context menu
creating 169
defining 166
displaying button caption text 179

Microsoft Office 2000 content
cleaning 332
preparing for copying to
eWebEditPro 294

removing class and style tags 370

suppress clean message 337
Microsoft Word

class attributes, removing 297

editing using 25, 348

editing XML documents 352

initial view format 349

options for processing

content 349

startupmode 349
minimal, publishing option 328
minimum size needed to show clean

HTML dialog box 338
mswordfilter attribute 336

N

name, instance object property 138

event 150
onbeforeload, JavaScript object
event 150
onbeforesave, JavaScript object
event 150
onblur
ActiveX event 149
oncreate, JavaScript object event 149
oncreatebutton, JavaScript object
event 149
ondblclickelement
ActiveX event 148
onedit, JavaScript object event 150
onerror
event, instance object 241
JavaScript object event 152
onexeccommand, ActiveX event 148
onfocus
ActiveX event 148
onload, JavaScript object event 151
onready, JavaScript object event 152
onsave, JavaScript object event 151

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 vii

ontoolbarreset, JavaScript object
event 151

open file dialog, command for
launching 527

openaccess attribute, autoupload
element 436

openDialog, JavaScript object
method 84, 85

operating system requirements,
server 160

operations element, WeblmageFX 518

outerXML, JavaScript object method 84

P

P tags
removing 295
page, Web, ASP, adding eWebeditPro
to 534
paragraph tag, replace with
linebreak 295
parameters
customizing 547
parameters object 242
JavaScript object property 141
methods
preferredType 131
relocate(frameName) 89
reset 91
properties 242
BaseURL 128
bodyStyle 121
buttonTag 129
charset 122
clientInstall 130
cols 130
config 122
editorGetMethod 144
embedattributes 130
Get WDDX() As String 124
hideaboutbutton 124
InstallPopupQuery 135
installPopupurl 134
maxContentSize 130
objectattributes 131
path 131
popup 133
popup.query 135
popupURL 135
popupWindowFeatures 135
popupWindowName 136
readOnly 132
rows 132
textareaAttributes 132
title 125
parameters object property 549
password element,mediafiles
feature 439

Password, image selection object
property 117
pasteHTML, ActiveX methods 85
pasteText, ActiveX methods 85
pasting text
command 527
path
images, resolving 423
parameters object property 131
to eWebEditPro 227
PHP, integration with eWebEditPro 560
Picture Properties dialog
alignment field
removing 395
setting default response 395
Picture Properties dialog
alignment field
modifying responses 394
pictures, see images
placeholder
editing properties 547
plug-in
Esker ActiveX
impact on accessing Media File
object 425
indicating installation of 141
PopulateTagsWithStyles, ActiveX style
sheet method 86
popup button
customizing 189
popup editor, detecting when
activated 575
popup element, configuration file 290
popup menu
creating 181
popup query
specifying web page of 135
popup windows
determining how many are open 8
features 135
specifying name 136
specifying web page of 135
popup, parameters object property 133
popup.query, parameters object
property 135
popupURL, parameters object
property 135
port element, mediafiles feature 443
port, Automatic Upload Property 111
Port, image selection object property 117
preferredType(), parameters object
method 131
preservewordclasses 350, 370
preservewordstyles attribute 370
prompt attribute, clean element 337
properties
image selection object

425
JavaScript object 236
parameters object 242
proxyserver element,mediafiles
feature 440
ProxyServer, image selection object
property 118
publish, attribute of standard
element 294
PublishHTML method, WeblmageFX 87
publishing options 328
publishStyles attribute 371
publishviewassource attribute, standard
element 295

Q

quick links
creating dynamically 391
editing list 383
in New Hyperlink dialog
adding 391
editing 390
removing 391

R

read only content, assigning 132
ReadOnly, ActiveX control property 124
ReadResponseHeader method 88
ReadUploadResponse, Media File
Object Methods 88, 89
receivedEvent, instance object
property 138
redisplay toolbar command 240
refreshStatus, JavaScript object
method 89
relocate(frameName)
parameters object 89
RemotePathFileName, image selection
object property 118
RemoveFieldValue, Media File Object
Methods 90
RemoveFileForUpload, Media File
Object Methods 90
reset
parameters object 91
reset toolbar
command 239
event 151
resolvePath(url)
JavaScript object method 91
ResolvePath, image selection object
property 118
resplvl attribute, autoupload
element 437
respository, image, setting up 447
right-click menu, see context menu

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1

viii

rows
parameters object property 132

S

sample pages, using 557
save
instance object method 92
JavaScript object method 92
method
detecting when invoked 572
terminating 573
Save method, WeblmageFX 92
SaveAs method, WeblmageFX 92
SavedFileName method,
WeblmageFX 93
saving content 572
body only 144
entire HTML document 144
preventing
when submit button is
pressed 573
when Web page unloaded 573
to HTML file 527
Savinglmage event, ImageError 147
selection element,configuration file 291
server, operating system
requirements 160
ServerName Property, Automatic
Upload 108
setBodyHTML, ActiveX methods 94
SetConfig method, WeblmageFX 94
SetContent method 95
setDocument
ActiveX method 95
SetFieldValue method 96
SetFileStatus, Automatic Upload
Methods 97
setHeadHTML
98
SetLocale method, WeblmageFX 99
setProperty, ActiveX method 99
SetValidFormats method,
WeblmageFX 100
shiftenter, attribute of standard
element 295
ShowActiveStylesDetails, ActiveX style
sheet method 101
showdlg attribute, autoupload element
autoupload element, showdlg
attribute 437
showdonemsg attribute, clean
element 338
ShowHeight, image selection object
property 119
showlistonsave attribute, autoupload
element

autoupload element,
showlistonsave attribute 438
showonsize attribute, clean element 338
ShowWidth, image selection object
property 119
size of content, estimating 60
space element
configuration file 292
span tags
applying to text surrounded by
blocking tags 371
with font styles, converting to font
tags 336
special characters
see also encoding special
characters
spell checker
as you type 346
adjusting speed 346
enabling 343
foreign language 223, 344
image that indicates misspelled
word 346
specifying number of replacement
words 346
using without Microsoft Word 345
SrcFileLocationName, image selection
object property 119
srcName
event object property 129
srcPath, ActiveX control property 125
standard element
configuration file 293
startupmode, MSWord attribute 349
status
instance object property 138
JavaScript object property 141
string attribute type 267
style
class see class,style
style element
configuration file 296
Style Sheet, ActiveX control
property 125
style sheets 367
applying 368
applying a style class to selected
text 376
default 368
publishStyle attribute’s effect 370
replacing default 368
specifying
for a page 369
for one editor 370
in config.xml 369
suppressing style classes from
dropdown menu list 379

three levels 368
translating style classes 378
style tags, removing from Microsoft
WORD 2000 content 370
system requirements 159

T

tables
customizing table dialogs 311
enabling in the configuration
file 311
menu, customizing 314
toolbar menu, customizing 315
TagCount method 102
tagelement element 340
tagonly element 340
tags
custom, ColdFusion 553
HTML
removing 340
removing content between 340
removing unnecessary 337
removing, with no attributes 341
tagWoAttr element 341
target frame list, hyperlink dialog,
editing 387
textareaAttributes, parameters object
property 132
Thumbnail method, WeblmageFX 102
titte, HTML page, setting 125
toolbarreset command 239
toolbars
defining 166
initialization event 151
preventing user customization 255
reacting to the creation of 239
redisplaying 240
reset event 151
resetting 239
user customization 254
Toolbars() As Toolbar Control Object,
ActiveX method 105
tooltiptext element 297
TransferMethod, image selection object
property 119
TransferRoot, image selection object
property 120
translating eWebEditPro to another
language 202
transport element,mediafiles feature 434
type
event object property 129
instance object property 138
type list, hyperlink dialog, editing 385

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 iX

U

undo command 528
unicode characters 356
saving 355
saving as binary 356
saving as UTF-8 356
viewing 355
viewing as character
references 328
upgradeNeeded, JavaScript object
property 142
Upload
Automatic, see Automatic Upload
upload
destination, specifying 441
destinations
selecting dynamically 450
directory
selecting dynamically 450
image, automatic 457
UploadConfirmMsg method 105
UploadConfirmMsg, Media File Object
Methods 105
uploadonsave attribute, autoupload
element 437
Use PassV, image selection object
property 120
user interface, defining 268
username element,mediafiles
feature 439
UTF-8
encoding 356, 357
implementing a web site using 364
saving unicode characters as 356

\%

valformats element, WeblmageFX 519

ValidConnection, image selection object
property 120

validext, mediafiles feature 432

ValidExtensions, image selection object
property 120

valoutformats element 520

version, JavaScript object
properties 142

versionInstalled, ActiveX control
properties 125

VerticalSpacing, image selection object
property 120

View As HTML

saving content 295
viewas feature 327
viewing HTML source code 327

W
Web page
ASP, adding eWebeditPro to 534
creating 566
Web server requirements 159
WeblmageFX
adding toolbar button to
launch 513
color depth, specifying 523
configuration data 514
imgcreate element 516
controlling 512
displaying 512
events
EditCommandComplete 144
EditCommandStart 145
EditComplete 145
ImageError 146
Loadinglmage 146
Savinglmage 147
events list 525
feature overview 510
fmtchange element 515
image format, specifying 523
imgedit element 516
imgfmt element 517
introduction 510
letting users change file
format 515
letting users change file name 517
letting users create images 516
methods
AskOpenFile 46
AskSaveAs 47
AskSelectColor 47
Convertimage 52
CreateNew 54
EditFile 55
EditFromHTML 56
EnableCreation 57
EnableFormatChange 57
EnableNameChange 58
ErrorClear 59
ErrorDescription 59
ErrorValue 60, 61
Getlmagelnformation 69
GetValidFormats 73
ImageEditor 74
IsDirty 76
IsPresent 78
IsVisible 79
LoadedFileName 83
PublishHTML 87
Save 92

SaveAs 92
SavedFileName 93
SetConfig 94
SetLocale 99
SetValidFormats 100
Thumbnail 102
methods, list 523
namechange element 517
object
assigning configuration 511
checking availability 511
using 511
object, retrieving 511
operations element 518
specifying graphic file formats 517
valformats element 519
WeblmagerFX
commands 526
WebPathName, image selection object
property 121
webroot element,mediafiles feature 442
WebRoot, image selection object
property 121
width, instance object property 139
window
closing without saving content 573
Word, Microsoft, see Microsoft Word
wrapstylewithdiv attribute 371

X

xferdir element,mediafiles feature 441
Xhtml
publishing option 328
xhtml output
determining 294
specifying 294
XML documents
editing with Microsoft Word 352
returning full 64
XML feature
methods
IsTagApplied 79
TagCount 102
XML files
validating 166, 258
XML object
methods
FindDataField 62
xmlinfo
ActiveX control property 126
XMLProcessor() As XML Object, ActiveX
method 106

Ektron® eWebEditPro Developer's Reference Guide, Release 5.1, Revision 1 X

	Summary Table of Contents
	Detailed Table of Contents
	Introduction
	eWebEditPro Object Model
	ewebeditproevents Object
	eWebEditProUtil Object
	eWebEditPro Object
	Event Object
	Parameters Object
	Popups Object
	Instances Object
	InstallPopup Object
	Popup Object
	Button Tag Object
	Image Tag Object
	eWebEditPro ActiveX Control Object
	Image Editor Object
	Toolbars Object
	Media File Object
	ObjectCommand Item Object
	Automatic Upload Object

	eWebEditPro API Cheat Sheet
	Alphabetical List of Methods, Properties and Events
	Master List of Methods
	Method: addEventHandler
	Method: AddFileForUpload
	Method: addInlineStyle
	Method: AddItem
	Method: addLinkedStyleSheet
	Method: AddNamedData
	Method: AskOpenFile
	Method: AskSaveAs
	Method: AskSelectColor
	Method: autoInstallExpected
	Method: BodyStyle
	Method: Clear
	Method: ClearStylesFromTags
	Method: CmdFirst
	Method: CmdNext
	Method: CommandAdd
	Method: CommandDelete
	Method: CommandItem
	Method: ConvertImage
	Method: create
	Method: createButton
	Method: CreateNew
	Method: disableStyleSheet
	Method: disableAllStyleSheets
	Method: edit
	Method: EditFile
	Method: EditFromHtml
	Method: EnableCreation
	Method: EnableFormatChange
	Method: EnableNameChange
	Method: ErrorClear
	Method: ErrorDescription
	Method: ErrorValue
	Method: EstimateContentSize
	Method: ExecCommand
	Method: ExecCommand
	Method: FileExistsLocally
	Method: FindDataField
	Method: FirstCommand
	Method: Focus
	Method: GetActiveStyleSheetTitles
	Method: getBodyHTML
	Method: getBodyText
	Method: GetContent
	Method: getDocument
	Method: GetFieldValue
	Method: GetFileDescription
	Method: GetFileStatus
	Method: getHeadHTML
	Method: GetImageInformation
	Method: getOpenerInstance
	Method: getProperty
	Method: getProperty
	Method: getPropertyBoolean
	Method: getPropertyInteger
	Method: getPropertyString
	Method: getPropertyString
	Method: getPropertyInteger
	Method: getPropertyBoolean
	Method: getSelectedHTML
	Method: getSelectedText
	Method: GetValidFormats
	Method: HideAbout
	Method: HideAllMenus
	Method: HTMLEncode
	Method: ImageEditor
	Method: insertMediaFile
	Method: isChanged
	Method: isChanged
	Method: IsDirty
	Method: isEditor
	Method: isEditor
	Method: isEditorReady
	Method: isOpen
	Method: isOpenerAvailable
	Method: IsPresent
	Method: IsTagApplied
	Method: IsValid
	Method: IsVisible
	Method: ListCommandName
	Method: ListFilesWithStatus
	Method: load
	Method: load
	Method: LoadedFileName
	Method: Locale
	Method: MediaFile
	Method: NextCommand
	Method: openDialog
	Method: outerXML
	Method: openDialog
	Method: pasteHTML
	Method: pasteText
	Method: PopulateTagsWithStyles
	Method: PopupMenu
	Method: PublishHTML
	Method: ReadNamedData
	Method: ReadResponseHeader
	Method: ReadUploadResponse
	Method: refreshStatus
	Method: relocate
	Method: RemoveFieldValue
	Method: RemoveFileForUpload
	Method: RemoveNamedData
	Method: reset
	Method: resolvePath
	Method: RetrieveHTMLString
	Method: save
	Method: Save
	Method: save
	Method: SaveAs
	Method: SavedFileName
	Method: SeparatorBarAdd
	Method: SeparatorSpaceAdd
	Method: setBodyHTML
	Method: SetConfig
	Method: SetContent
	Method: setDocument
	Method: SetFieldValue
	Method: SetFileDescription
	Method: SetFileStatus
	Method: setHeadHTML
	Method: SetLocale
	Method: setProperty
	Method: setProperty
	Method: SetValidFormats
	Method: ShowAbout
	Method: ShowActiveStylesDetails
	Method: ShowAllMenus
	Method: TagCount
	Method: Thumbnail
	Method: ToolbarAdd
	Method: ToolbarModify
	Method: Toolbars
	Method: UploadConfirmMsg
	Method: UseHTMLString
	Method: XMLProcessor

	Master List of Properties
	Property: CmdCaption
	Property: CmdData
	Property: CmdGray
	Property: CmdIndex
	Property: CmdName
	Property: CmdSorted
	Property: CmdStyler
	Property: CmdText
	Property: CmdToggledOn
	Property: CmdToolTipText
	Property: CmdType As etbCommandStyles
	Property: CmdVisible
	Property: MaxListboxWidth
	Property: ServerName
	Property: LoginName
	Property: LoginRequired
	Property: Password
	Property: TransferRoot
	Property: ValidExtensions
	Property: WebRoot
	Property: ContentDescription
	Property: AllowUpload
	Property: ContentTitle
	Property: ContentType
	Property: Port
	Property: Alignment
	Property: AllowSubDirectories
	Property: allowupload
	Property: BaseURL
	Property: BorderSize
	Property: DefDestinationDir
	Property: DefSourceDir
	Property: Domain
	Property: FileSize
	Property: FileTitle
	Property: FileType
	Property: FWLoginName
	Property: FWPassword
	Property: FWPort
	Property: FWProxyServer
	Property: FWUse
	Property: FWUsePassV
	Property: Get ShowResolutionOverride
	Property:Get EnablePathResolution
	Property: Get XferType
	Property: Get IsValid
	Property: HandledInternally
	Property: HorizontalSpacing
	Property: ImageHeight
	Property: ImageWidth
	Property: IsLocal
	Property: LoginName
	Property: MediaType
	Property: MaxFileSizeK
	Property: NeedConnection
	Property: Password
	Property: Port
	Property: ProxyServer
	Property: RemotePathFileName
	Property: ResolveMethod
	Property: ResolvePath
	Property: ShowHeight
	Property: ShowWidth
	Property: SrcFileLocationName
	Property: TransferMethod
	Property: TransferRoot
	Property: UsePassV
	Property: ValidConnection
	Property: ValidExtensions
	Property: VerticalSpacing
	Property: WebPathName
	Property: WebRoot
	Property: bodyStyle
	Property: CharSet
	Property: Config
	Property: Disabled
	Property: Get WDDX
	Property: hideAboutButton
	Property: IsDirty
	Property: License
	Property: Locale
	Property: ReadOnly
	Property: SrcPath
	Property: StyleSheet
	Property: Title
	Property: versionInstalled
	Property: xmlInfo
	Property: border
	Property: height
	Property: width
	Property: src
	Property: alt
	Property: Start
	Property: End
	Property: Type
	Property: tagAttributes
	Property: value
	Property: BaseURL
	Property: type
	Property: srcName
	Property: buttonTag
	Property: clientInstall
	Property: cols
	Property: embedAttributes
	Property: maxContentSize
	Property: objectAttributes
	Property: path
	Property: preferredType
	Property: readOnly
	Property: rows
	Property: textareaAttributes
	Property: popup
	Property: url
	Property: windowName
	Property: windowFeatures
	Property: query
	Property: url
	Property: query
	Property: windowFeatures
	Property: windowName
	Property: editor
	Property: elemName
	Property: formName
	Property: height
	Property: html
	Property: id
	Property: maxContentSize
	Property: name
	Property: readOnly
	Property: receivedEvent
	Property: status
	Property: type
	Property: width
	Property: {editor name}
	Property: actionOnUnload
	Property: instances collection
	Property: installPopup
	Property: isAutoInstallSupported
	Property: isInstalled
	Property: isSupported
	Property: parametersobject
	Property: status
	Property: upgradeNeeded
	Property: Version
	Property: editorName
	Property: queryArgs
	Property: languageCode
	Property: editorGetMethod

	Master List of Events
	Event: EditCommandComplete
	Event: EditCommandStart
	Event: EditComplete
	Event: ImageError
	Event: LoadingImage
	Event: SavingImage
	Event: ondblclickelement
	Event: onexeccommand
	Event: onfocus
	Event: onblur
	Event: oncreate
	Event: oncreatebutton
	Event: onbeforeedit
	Event: onedit
	Event: onbeforeload
	Event: onbeforesave
	Event: ontoolbarreset
	Event: onsave
	Event: onload
	Event: onready
	Event: onerror
	Event: eWebEditProReady
	Event: eWebEditProExecCommand
	Event: eWebEditProMediaSelection
	Event: eWebEditProMediaNotification
	Event: eWebEditProDblClickElement
	Event: eWebEditProDblClickHyperlink
	Event: eWebEditProDblClickImage
	Event: eWebEditProDblClickTable

	Commands
	How Commands are Processed
	Sources of Commands

	Using eWebEditPro
	Design and Implementation Guidelines
	System Requirements
	Maximum Size of Content
	Placing More Than One Editor on a Page
	Samples
	Memory Considerations
	Recommendations

	eWebEditPro Dataflow
	Integrating eWebEditPro into a Web Page
	Content Flow Diagram
	1. The Edit Page: Read Content
	2. The Hidden Field
	3. The onload Event
	4. The onsubmit Event
	5. The Action Page: Write Content

	Defining the Toolbar
	Modifying Configuration Data
	Toolbar Menus
	Defining the eWebEditPro Toolbar
	Determining Which Menus Appear on the Toolbar
	Finding a Toolbar Menu’s Internal Name
	Creating a Custom Toolbar Menu
	Removing a Toolbar Menu
	Removing All Toolbars
	Placing a Toolbar Menu on a Row with Another Menu
	Determining if a Toolbar Menu Should Wrap to the Next Row
	Creating or Editing the Toolbar Menu Caption

	Determining Which Buttons and Dropdown Lists Appear on a Menu
	Adding a Toolbar Button
	Adding a Dropdown List
	Removing a Toolbar Button or Dropdown List
	Rearranging Buttons/Dropdown Lists on a Toolbar Menu
	Adding a Space Between Two Toolbar Menu Items
	Adding a Separator Bar Between Two Toolbar Menu Items
	Changing the Image that Appears on a Toolbar Button
	Displaying Button Caption Text
	Defining the Alignment of Caption Text
	Translating Button Captions and Tool Tips

	Creating a Popup Menu
	Determining which Fonts, Font Sizes, and Headings are Available
	Changing Available Fonts
	Changing Available Font Sizes
	Changing Available Headings

	Creating a List Item that Generates No Command

	Dynamically Changing the Editor
	Dynamically Creating Configuration Data on the Server Side
	Avoiding Problems When Dynamically Changing the Toolbar on the Server

	Dynamically Changing the Editor on the Client Using JavaScript
	Disabling and Enabling Menu Items within Scripting
	Accessing Menus and Commands
	Enabling and Disabling a Command

	Customizing the Popup Button
	Customizing the createButton Command

	Customizing Context Menus
	Removing Commands from a Context Menu
	Context Menu Commands and their Internal Names

	Suppressing the Context Menu
	The Toolbar Object Interface
	Defining Menus and Commands
	Toolbar Object Quick Reference
	Command Object Quick Reference
	Script Example
	Command Values
	etbToolbarOptions
	etbToolbarStyles
	etbCaptionAlignment
	etbToolbarLocation
	etbToolbarModifications
	etbCommandOptions
	etbCommandStyles
	etbCommandModifications
	etbErrorValues

	Modifying the Language of eWebEditPro
	How eWebEditPro Determines the User Interface Language
	Locale Files
	Standard Locale Files

	Translating eWebEditPro’s User Interface
	Displaying the User Interface in a Translated Language
	Translating the User Interface to a Windows-Supported Language

	Languages Supported by Windows
	Terms on the Supported Languages Table

	Working with non-English Content
	Accented Characters

	Using the Languages Sample
	Displaying Menus and Dialogs in a non-European Language
	Setting the Language of Spell Checking
	Modifying Standard Text (including English)
	Location of Translated Strings
	Modifying American English Text
	Modifying the Standard Text of a Translated Language
	Modifying the Standard Text of a Windows-Supported Language

	Customizable JavaScript Files
	The ewebeditpro.js File
	The ewebeditprodefaults File
	The ewebeditpromessages File
	Disabling the "Click OK to Preserve Changes" Message

	The ewebeditproevents File
	The ewebeditpromedia File

	Client Installation Pages
	Customizing the Client Installation Pages
	Disabling the Installation Pages
	What Happens When Auto Install Fails or is Cancelled

	JavaScript Objects
	The JavaScript Object Model
	JavaScript Object Properties, Methods and Events
	Event Handler Functions
	Double-Click Element Handlers
	The eWebEditProExecCommandHandlers Array
	ExecCommandHandlersArray Parameters
	Parameter Requirements for Commands

	The Toolbar Reset Command
	Reacting to the Initialization of a Toolbar
	When the Event is Sent to the Script
	Using Toolbarreset to Reset Customization

	The Redisplay Toolbars Command
	The Instance Object
	The onerror Event
	The instanceTypes Array

	The Parameters Object
	Parameters Object Properties
	Installation Popup Window Defaults
	Popup Window Defaults

	eWebEditProUtil JavaScript Object

	ActiveX Control
	Accessing the ActiveX Control Using JavaScript
	eWebEditPro JavaScript object
	eWebEditPro ActiveX control
	Instance JavaScript object

	ActiveX Properties, Methods and Events

	The Configuration Data
	Managing the Configuration Data
	Editing the Configuration Data
	Providing Configuration Files for User Groups
	Changing the Configuration Data’s Location
	Troubleshooting Problems with the Configuration Data

	Organization of Configuration Documentation
	Managing the Configuration Data
	Editing the Configuration Data
	Providing Configuration Files for User Groups
	Changing the Configuration Data’s Location
	Troubleshooting Problems with the Configuration Data

	Letting Users Customize the Toolbar
	Allowing User Customization
	Preventing Customization by Users
	Overriding User Customization
	Determining Which Configuration Data to Use
	Changes to config.xml Have No Effect

	Overview of Configuration Data
	Configuration Data: Functional View
	Configuration Data: Functional View Topic List

	Configuration Data: Hierarchical View
	Configuration Elements in Alphabetical Order
	The Config Element
	The Interface Element
	Buttons not Assigned to Menus

	The Features Element
	Attribute Types
	Boolean
	Integer
	String

	User Interface Elements: Standard, Menu, and Popup
	User Interface Element Hierarchy
	User Interface Elements in Alphabetical Order
	User Interface Element Definitions
	bar
	button
	Caption
	command
	cmd
	config
	features
	image
	interface
	listchoice
	menu
	popup
	selections
	space
	standard
	style
	toolTipText

	Button Images
	Formats Supported
	Sources of Images
	Images Supplied by eWebEditPro
	Creating Your Own Images
	Image File Extensions
	Size of Button Images
	Background Color of Button Images
	Button Image Specification Summary

	Managing Tables
	The Table Element of the Configuration Data
	Element Hierarchy
	Child Elements
	Attributes

	Allowing Users to Create Tables
	Customizing the Table Dialogs
	Restricting Table Options
	Customizing the Tables Menu
	Customizing the Tables Toolbar Menu
	Setting Default Values for the Insert Table Dialog
	Controlling Alignment Field Responses
	Controlling Responses for the Horizontal Alignment Field
	Controlling Responses for the Vertical Alignment Field

	Fonts and Headers
	fonts
	Element Hierarchy
	Attributes

	fontname
	Remarks
	Element Hierarchy
	Attributes

	fontsize
	Remarks
	Element Hierarchy
	Attributes

	headings
	Element Hierarchy
	Attributes

	heading[x]
	Remarks
	Element Hierarchy
	Attributes

	External Features
	Description
	Element Hierarchy
	Attributes

	Adding External Features
	Examples

	Viewing and Editing HTML Content
	The ViewAs Feature
	Disabling Custom Toolbar Buttons View as HTML Mode

	The EditHTML Feature

	Form Elements
	Description
	Element Hierarchy
	Attributes

	Cleaning HTML
	Clean Element Hierarchy
	Providing User Access to the Clean Feature
	Clean Element
	Element Hierarchy
	Child Elements
	Attributes

	Remove Element
	Element Hierarchy
	Child Elements
	Attributes

	Endtag Element
	Element Hierarchy
	Attribute
	Example

	Attribute Element
	Element Hierarchy
	Attribute
	Example

	Tagonly and Tagelement Elements
	Element Hierarchy
	Attribute
	Example

	TagWoAttr Element
	Element Hierarchy
	Attribute
	Example

	xsltFilter Element

	The Spellcheck Feature
	Spellcheck
	Element Hierarchy
	Child Elements
	Attributes

	Spellayt
	Element Hierarchy
	Attributes

	Spellingsuggestion
	Element Hierarchy
	Attributes

	Example of Spell Check Features

	Editing in Microsoft Word
	Element Hierarchy
	Child Elements
	Attributes
	Using the Long Parameter with cmdmsword

	How Microsoft Word Content is Processed
	Conserve Word Formatting
	Convert Styles
	Conform by Discarding
	Options

	Using Word to Edit XML Documents

	Encoding Special Characters
	Factors that Affect the Display of Special Characters
	Viewing and Saving Unicode Characters
	Displaying Asian Languages
	Unicode Characters

	Configuring for Extended and Special Characters
	charencode Attribute
	Choosing a charencode Value

	Character Encoding Checklist
	UTF-8
	How to Store Unicode Characters So They Are Searchable
	References

	Implementing a Web Site that Uses UTF-8 Encoding
	Implementing UTF-8
	Tips
	Setting the charset Parameter
	Browser Support for UTF-8
	For More Information about UTF-8

	Style Sheets
	Using Style Sheets to Standardize Formatting
	The Default Style Sheet
	Changing the Default Style Sheet

	Applying Style Sheets
	Specifying a Style Sheet in the Configuration Data
	Adding a Style Sheet to a Single Page
	Dynamically Changing a Style Sheet for a Single Instance of the Editor

	The BodyStyle Parameter
	Preserving Tags When Office Content is Pasted
	Saving Style Sheet Tags When Content is Saved
	Setting Publishstyles to True
	Setting Publishstyles to False

	Inserting span or div Tags
	Applying Two Style Classes to the Same Content
	Location of equivClass Attribute
	How the Editor Determines if Two Classes Are Equivalent
	New Class is Equivalent to Original Class
	New Class is not Equivalent to Original Class
	Forcing Two Classes to be Equivalent
	Tips for Using this Feature

	Implementing Style Class Selectors
	Example of Using Style Class Selectors
	Types of Style Classes
	Determining Which Style Classes Appear in the Dropdown List
	Determining the Names in the Dropdown List
	Suppressing Styles from the Dropdown List
	Style Classes and Matching Attributes

	Managing Hyperlink Dialogs
	Customizing Dropdown Lists in the Hyperlink Dialog Box
	Customizing the Lists of the Hyperlink Dialog Box
	Quick Link List
	Type List
	Target Frame List
	Specifying Default Values for the Insert Hyperlink Dialog

	Editing the New HyperLink Dialog Box
	Editing Quick Links
	Dynamically Creating the Quick Links File

	Managing Images
	How Image Selection Works
	Organization of the Image Selection Documentation
	Customizing the Alignment Field of the Picture Properties Dialog
	Modifying Alignment Field Responses
	Setting a Default Response for the Alignment Field
	Removing the Alignment Field from the Picture Properties Dialog

	Examples of Implementing Image Selection
	Example 1: No Restrictions, No Saving to a Database
	Example 2: File Size Restriction, No Saving to Database
	Example 3: FTP
	Example 4: Database Samples

	Implementing Image Upload
	FTP File Upload
	HTTP File Upload

	Using EktronFileIO for Your Own Image Uploads
	Step 1: Create a Selection Web Page
	Step 2: Create a Form with a File Selection Field Item
	Step 3: Creating an ASP Page to Activate the Posted Upload
	Step 4: Providing Upload Feedback
	ColdFusion

	Manipulating Media File Methods and Properties
	Using Local or Given Image Path Resolutions
	Base URL
	Given Resolution Type

	Programmatically Accessing Media File Properties
	Accessing the Media File Object
	Using Netscape to Access Image Properties
	Entry Point for Using External Scripts
	Setting External Page Parameters
	Changing the Transfer Method on the Fly
	Programmatically Changing from the Default of FTP to the ASP Library
	Specifying an Image to Insert
	Modifying the Upload Directory

	The Mediafiles Feature
	Mediafiles Element Hierarchy
	User Interface Elements in Alphabetical Order
	Mediafiles Element
	Description
	Element Hierarchy
	Child Elements
	Attributes

	Validext Element
	Description
	Element Hierarchy
	Attributes
	Example

	Maxsizek Element
	Description
	Element Hierarchy
	Attributes

	Mediaconfig Element
	Description
	Element Hierarchy
	Attributes
	Example

	Transport Element
	Description
	Element Hierarchy
	Child Elements
	Attributes

	Autoupload Element
	Description
	Element Hierarchy
	Attributes

	Username Element
	Description
	Element Hierarchy
	Attributes

	Password Element
	Description
	Element Hierarchy
	Attributes

	Proxyserver Element
	Description
	Element Hierarchy
	Attributes

	Domain Element
	Description
	Element Hierarchy
	Attributes

	Xferdir Element
	Description
	Element Hierarchy
	Attributes

	Webroot Element
	Description
	Element Hierarchy
	Attributes

	Defsource Element
	Description
	Element Hierarchy
	Attributes

	Port Element
	Description
	Element Hierarchy
	Attributes

	Resolvemethod Element
	Description
	Element Hierarchy
	Attributes

	Imageedit element
	Description
	Element Hierarchy
	Child Elements

	Control Element
	Description
	Element Hierarchy
	Attributes

	Setting up an Image Repository
	The Image Repository Folder
	Inserting an Image into a Web Page
	Example

	Dynamically Selecting Upload Destinations
	Setting Up Image Upload
	Media File Object
	Modifying the Upload Location
	Sample HTML Page
	User Selection - Changing the Upload Location
	Full Example

	Automatic Upload
	Automatic Upload of Files and Images from an External Application
	Installing the Automatic Upload Feature
	Modules that Enable Automatic Upload
	An Example of Customizing Automatic Upload

	cmdmfuuploadall Command
	Overview of the Automatic Upload Process
	The Upload Process

	Information Components
	Concepts

	eWebEditPro Fields Sent with Post
	Image Upload Fields
	Custom Field Set
	Example HTML Form

	Creating an Automatic File Receive Script
	What This Section Covers
	What This Section Does Not Cover
	The Automatic Upload Server-Side Receiving Module

	Steps to Receiving a File
	Step 1 - Act on the Command
	Step 2 - Extract the File Information
	Step 3 - Determine the File Destination
	Step 4 - Extract the File Binary and Save
	Step 5 - Build the Return XML Data
	Step 6 - Respond Back to the Client
	Creating the Script
	Data Island

	Steps to Receiving Content
	Step 1 - Act on the Command
	Step 2 - Extract the Content
	Step 3 - Save the Content
	Step 4 - Return a Response

	EWepAutoSvr Object API
	ClientMajorRev
	ClientMinorRev
	EkFileSave
	EkFileSave2
	EkFormFieldValue
	EkFileSize
	FileObject
	FileCount
	ResponseData

	EkFileObject API
	Description
	FileDimensions
	FileError
	FileID
	FileName
	FileSize
	FileType
	FileUrl
	Fragment
	Thumbnail
	ThumbReference

	XML Element Descriptions
	DBORDER
	DESC
	DHEIGHT
	DWIDTH
	FERROR
	FID
	FILEINFO
	FRAGMENT
	FSIZE
	FSRC
	FTYPE
	FURL
	THUMBNAIL
	THUMBHREF
	UPLOAD

	Image Upload Response Example with Proprietary Information
	ColdFusion Example
	ASP Example

	Automatic Upload Object
	Media File Object Properties
	Automatic Upload Object Properties as a Subset of the Media Object Settings

	Content Upload
	Retrieving Content from eWebEditPro
	The Content Upload Command
	Content Setting API
	Automatic Upload Object Interface Properties
	JavaScript Example
	Fields in the Posted Form
	Steps to Receiving Content
	Step 1 - Act on the Command
	Step 2 - Extract the Content
	Step 3 - Save the Content
	Step 4 - Return a Response

	The Receiving Page
	Creating a Receiving Page

	Content Types
	What Happens if a Content Type is Not Supported
	Content Type Categories
	How Content Type is Determined

	WebImageFX
	Using the WebImageFX Object
	Assigning Configuration
	Retrieving the Object
	Checking Availability
	Displaying WebImageFX
	Controlling WebImageFX
	Full Example

	Adding a Toolbar Button to Launch WebImageFX
	New Configuration Variable
	WebImageFX’s Configuration Data
	fmtchange
	imgcreate
	imgedit
	imgfmt
	namechange
	operations
	valformats
	valoutformats
	Image Names
	Specifying Image Format
	Specifying Color Depth

	Methods to Manipulate WebImageFX
	Events to Manipulate WebImageFX
	Commands Unique to WebImageFX
	The lData Parameter

	Client Script Interface for Automatic File Upload
	Initializing the Automatic Upload
	Interface Retrieval
	Properties
	AllowUpload
	WebRoot
	ValidExtensions
	TransferRoot
	Port
	LoginRequired
	LoginName
	Password
	TransferMethod
	ServerName

	Methods
	GetFileDescription(FileName)
	SetFileDescription(FileName, Description)
	ReadResponseHeader()
	AddNamedData(FileName, DataName, DataValue)
	ReadNamedData(FileName, DataName)
	RemoveNamedData(FileName, DataName)
	GetFileStatus(FileName)
	SetFileStatus(FileName, Status)
	ReadUploadResponse()
	UploadConfirmMsg(Message, Title)
	SetFieldValue(DataName, DataValue)
	GetFieldValue(DataName)
	RemoveFieldValue(DataName)
	AddFileForUpload(LocalFileName, Description)
	ListFilesWithStatus(Status, Delim)
	RemoveFileForUpload(LocalFileName)

	Property Setting Methods

	Integrating eWebEditPro
	Integrating eWebEditPro with ASP
	Using the Sample Pages
	Creating Your Own Page
	Including a Reference to ewebeditpro.asp
	Entering a Relative Path
	Entering an Absolute Path

	Setting Up a Form
	Placing the Editor on the Form
	Changing Parameter Values
	Inserting the Editor as a Box
	Inserting the Editor as a Button

	Adding a Submit Button

	Integrating eWebEditPro with ASP.NET
	Using the Sample Pages
	Integrating eWebEditPro on an ASP.NET Page
	Using a Function
	Using a Custom User Control
	Using a Custom Server Control

	Declaring the Schema File

	Integrating eWebEditPro with ColdFusion
	Creating Your Own Page
	Setting Up a Form
	Calling the eWebEditPro Custom Tag
	First Time Installation of eWebEditPro

	Adding a Submit Button
	eWebEditPro’s Custom Tag
	Custom Tag Attributes

	Integrating eWebEditPro with JSP
	Using the Sample Pages
	Creating Your Own Page
	Including a Reference to ewebeditpro.jsp
	Setting Up a Form
	Placing the Editor on the Form
	Changing Parameter Values
	Inserting the Editor

	Adding a Submit Button

	Integrating eWebEditPro with PHP
	Using the Sample Pages
	Creating Your Own Page
	Including a Reference to ewebeditpro.php
	Setting Up a Form
	Placing the Editor on the Form
	Changing Parameter Values
	Inserting the Editor

	Adding a Submit Button

	Integrating eWebEditPro Using JavaScript
	Using the Sample Pages
	Formats for Placing the Editor on the Page
	Creating Your Own Page
	Create an HTML Page with Header and Body Tags
	Include the eWebEditPro JavaScript File
	Enter a Form Element
	Changing Parameter Values
	Inserting the Editor as a Box
	Inserting the Editor as a Button
	Encoding Characters in the Value Attribute

	Loading the Content
	Detecting the Load Method
	Manually Loading Content into the Editor

	Saving the Content
	Detecting when the Save Method is Invoked
	Terminating the Save Method
	Saving Content Manually
	Closing a Window without Saving Content
	Prevent Detecting the onsubmit Event
	Prevent Detecting the onbeforeunload/onunload Event
	Preventing the Save Caused by an onbeforeunload Event
	Saving from One Instance of the Editor
	Detecting When the Popup Editor is Activated

	Testing the Page

	Appendices
	Appendix A: Naming the eWebEditPro Editor
	Appendix B: Error Messages
	Appendix C: eWebEditPro Architecture
	Appendix D: Automatic Upload File Types
	Images
	Audio
	Video
	Text
	Application (file for a specific application)
	Other

	Index

